Search results

1 – 10 of over 1000
Article
Publication date: 13 November 2009

Chia‐Hau Chen, Chao‐Shi Chen, Ernian Pan, Han‐Chou Tseng and Pao‐Shan Yu

The purpose of this paper is to present special nine‐node quadrilateral elements to discretize the un‐cracked boundary and the inclined surface crack in a transversely isotropic…

Abstract

Purpose

The purpose of this paper is to present special nine‐node quadrilateral elements to discretize the un‐cracked boundary and the inclined surface crack in a transversely isotropic cuboid under a uniform vertical traction along its top and bottom surfaces by a three‐dimensional (3D) boundary element method (BEM) formulation. The mixed‐mode stress intensity factors (SIFs), KI, KII and KIII, are calculated.

Design/methodology/approach

A 3D dual‐BEM or single‐domain BEM is employed to solve the fracture problems in a linear anisotropic elastic cuboid. The transversely isotropic plane has an arbitrary orientation, and the crack surface is along an inclined plane. The mixed 3D SIFs are evaluated by using the asymptotical relation between the SIFs and the relative crack opening displacements.

Findings

Numerical results show clearly the influence of the material and crack orientations on the mixed‐mode SIFs. For comparison, the mode‐I SIF when a horizontal rectangular crack is embedded entirely within the cuboid is calculated also. It is observed that the SIF values along the crack front are larger when the crack is closer to the surface of the cuboid than those when the crack is far away from the surface.

Research limitations/implications

The FORTRAN program developed is limited to regular surface cracks which can be discretized by the quadrilateral shape function; it is not very efficient and suitable for irregular crack shapes.

Practical implications

The evaluation of the 3D mixed‐mode SIFs in the transversely isotropic material may have direct practical applications. The SIFs have been used in engineering design to obtain the safety factor of the elastic structures.

Originality/value

This is the first time that the special nine‐node quadrilateral shape function has been applied to the boundary containing the crack mouth. The numerical method developed can be applied to the SIF calculation in a finite transversely isotropic cuboid within an inclined surface crack. The computational approach and the results of SIFs are of great value for the modeling and design of anisotropic elastic structures.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 December 2019

Shuji Tomaru and Akiyuki Takahashi

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose…

Abstract

Purpose

Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified.

Design/methodology/approach

In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously.

Findings

The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time.

Originality/value

This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.

Details

International Journal of Structural Integrity, vol. 11 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 June 2020

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was…

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 October 2014

Prasad Ramchandra Baviskar and Vinod B. Tungikar

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using…

Abstract

Purpose

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using Artificial Neural Networks (ANN). An alternative to the existing NDTs is suggested.

Design/methodology/approach

Modal analysis is performed to extract the natural frequency. Analysis is performed for two cases of cracks. In first case, both cracks are perpendicular to axis. In second case, both cracks are inclined to vertical plane and also inclined with each other. Finite element method (FEM) is performed using ANSYSTM software which is theoretical basis. Experimentation is performed using Fast Fourier Transform (FFT) analyzer on simply supported stepped rotor shaft and cantilever circular beam with two cracks each.

Findings

The results of FEM and experimentation are validated and are in good agreement. The error in crack detection by FEM is in the range of 3-15 percent while 5-20 percent by experimentation. The database obtained by modal analysis is used to train the network of ANN which predicts crack characteristics. Validity of method is investigated by comparing the predictions of ANN with FEM and experimentation. The results are in good agreement with error of 7-16 percent between ANN and FEM while 9-21 percent between ANN and experimental analysis.

Originality/value

It envisages that the method is capable. It is an effective as well as an alternate method of fault detection in beam/rotating element to the existing methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 June 2017

Hussain Altammar, Sudhir Kaul and Anoop K. Dhingra

Wavelets are being increasingly used for damage diagnostics. The purpose of this paper is to present an algorithm that uses the wavelet transform for detecting mixed-mode, also…

Abstract

Purpose

Wavelets are being increasingly used for damage diagnostics. The purpose of this paper is to present an algorithm that uses the wavelet transform for detecting mixed-mode, also known as combined mode, cracks in large truss structures.

Design/methodology/approach

The mixed-mode crack is modeled by superposing two damage modes, and this model is combined with a finite element model of the truss. The natural modes of the truss are processed through the wavelet transform and then used to determine the damage location. The influence of multiple parameters such as truss geometry, crack geometry, number of truss members, orientation of truss members, etc. is investigated as part of the study.

Findings

The proposed damage detection algorithm is found to be successful in detecting single mode as well as mixed-mode cracks even in the presence of significant end effects, and even when a relatively coarse sampling of natural modes is used. Results from multiple simulations that involve three commonly used truss structures are presented. A correlation between damage severity and the magnitude of wavelet coefficients is observed.

Originality/value

The proposed algorithm is found to be successful in accurately detecting damage, but direct determination of damage severity is found to be challenging.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 November 2023

Zhenwei Li, Zhixun Wen, Cheng Wang, Ying Dai and Peng Fei He

This paper aims to provide SIF calculation method for engineering application.

Abstract

Purpose

This paper aims to provide SIF calculation method for engineering application.

Design/methodology/approach

In this paper, the stress intensity factors (SIFs) calculation method is applied to the anisotropic Ni-based single crystal film cooling holes (FCHs) structure.

Findings

Based on contour integral, the anisotropic SIFs analysis finite element method (FEM) in Ni-based single crystal is proposed. The applicability and mesh independence of the method is assessed by comparing the calculated SIFs using mode of plate with an edge crack. Anisotropic SIFs can be calculated with excellent accuracy using the finite element contour integral approach. Then, the effect of crystal orientation and FCHs interference on the anisotropic SIFs is clarified. The SIFs of FCH edge crack in the [011] orientated Ni-based single crystal increases faster than the other two orientations. And the SIF of horizontal interference FCHs edge crack is also larger than that of the inclined interference one.

Originality/value

The SIFs of the FCH edge crack in the turbine air-cooled blade are innovatively computed using the sub-model method. Both the Mode I and II SIFs of FCHs edge crack in blade increase with crack growing.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 May 2013

Shashikant J. Joshi and Smita Manepatil

The determination of stress intensity factors (SIF) is of fundamental importance in prediction of brittle failure using linear elastic fracture mechanics. The presence of a crack

Abstract

Purpose

The determination of stress intensity factors (SIF) is of fundamental importance in prediction of brittle failure using linear elastic fracture mechanics. The presence of a crack in the vicinity of another crack induces an interaction effect. The purpose of this paper is to determine the SIF for an orthotropic lamina subjected to uniaxial loading and containing two cracks. The solution is obtained for one crack being horizontal and located in the centre of lamina while the other crack is inclined to first one. The effect of angle of the second crack, fibre angle is studied. Also, for the case of two parallel cracks, effect of eccentricity in x and y directions is observed.

Design/methodology/approach

Boundary collocation method is used and stress functions satisfying governing equations in the domain and ensuring stress singularity at the crack tips are defined. The boundary condition on the edges of lamina and the crack is satisfied to determine the complex coefficients in the stress functions.

Findings

For the given fibre angle, orientations of second crack which result in increase/decrease in the SIF at the most dangerous crack tip are found out.

Originality/value

Boundary collocation method which is simple and efficient is extended for studying two crack problem in orthotropic materials.

Details

International Journal of Structural Integrity, vol. 4 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 August 2013

Deepayan Gope, Prakash Chandra Gope and Aruna Thakur

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack growth has…

Abstract

Purpose

This paper aims to deal with the study of interaction between multiple cracks in an aluminum alloy under static loading. Self-similar as well as non-self-similar crack growth has been observed which depends on the relative crack positions defined by crack offset distance and crack tip distance. On the basis of experimental observations, the conditions for crack coalescence, crack shielding, crack interaction, crack initiation, etc. are discussed with respect to crack position parameters. Considering crack tip distance, crack offset distance, crack size and crack inclination with loading axis as input parameter and crack initiation direction as output parameter, an artificial neural network (ANN) model is developed. The model results were then compared with the experimental results. It was observed that the model predicts the crack initiation direction under monotonic loading within a scatter band of ±0.5°.

Design/methodology/approach

The study is based on the experimental observations. Growth studies are made from the growth initiation from two cracks in a rectangular aluminium plate under static loading. The present study is focused on the influence of crack position defined by crack offset distance and crack tip distance on growth direction. In addition to this, ANN has been used to predict crack growth direction in multiple crack geometry under static loading. The predicted results have been compared with the experimental data.

Findings

The influence of the interaction between multiple cracks on crack extension angle greatly depends on the relative position of cracks defined by crack tip distance S, crack offset distance H and crack inclinations with respect to loading direction. The intensity of the crack interaction can be described according to degree of crack extension angle and relative crack position factors. It is also observed that the progress of the outer and inner crack tip direction is different which mainly depends on the relative crack position.

Research limitations/implications

It is limited to static loading only. Under fatigue loading findings may differ.

Practical implications

It is important to investigate the growth behaviour under multiple cracks and also to know the effect of crack statistics on the growth behaviour to estimate the component life. The study also focused on the development of a high quality predictive method.

Originality/value

The results show trends that vary with crack geometry condition and the ANN and empirical solution provides a possible solution to assess crack initiation angle under multiple crack geometry.

Details

International Journal of Structural Integrity, vol. 4 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 July 2020

Ritesh Kumar, Himanshu Pathak, Akhilendra Singh and Mayank Tiwari

The purpose of this paper is to analyze the repair of a straight and angular crack in the structure using a piezoelectric material under thermo-mechanical loading by the extended…

Abstract

Purpose

The purpose of this paper is to analyze the repair of a straight and angular crack in the structure using a piezoelectric material under thermo-mechanical loading by the extended finite element method (XFEM) approach. This provides a general and simple solution for the modeling of crack in the structure to analyze the repair.

Design/methodology/approach

The extended finite element method is used to model crack geometry. The crack surface is modeled by Heaviside enrichment function while the crack front is modeled by branch enrichment functions.

Findings

The effectiveness of the repair is measured in terms of stress intensity factor and J-integral. The critical voltage at which patch repair is most effective is evaluated and presented. Optimal patch shape, location of patch, adhesive thickness and adhesive modulus are obtained for effective repair under thermo-mechanical loading environment.

Originality/value

The presented numerical modeling and simulation by the XFEM approach are of great benefit to analyze crack repair in two-dimensional and three-dimensional structures using piezoelectric patch material under thermo-mechanical loading.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Yanmin Jia

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this…

Abstract

Purpose

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this paper, based on the truss-arch model, is to analyze the shear mechanism in prestressed reinforced concrete beams and establish the calculation formula for shear capacity.

Design/methodology/approach

Considering the effect of the prestressed reinforcement axial force on the angle of the diagonal struts and regression coefficient of softening cocalculation of shear capacity is established. According to the shape of the cracks of prestressed reinforced concrete beams under shear compression failure, the tie-arch model for the calculation of shear capacity is established. Shear-failure-test beam results are collected to verify the established formula for shear bearing capacity.

Findings

Through theoretical analysis and experimental beam verification, it is confirmed in this study that the truss-arch model can be used to analyze the shear mechanism of prestressed reinforced concrete members accurately. The calculation formula for the angle of the diagonal struts chosen by considering the effect of prestress is accurate. The relationship between the softening coefficient of concrete and strength of concrete that is established is correct. Considering the effect of the destruction of beam shear plasticity of the concrete on the surface crack shape, the tie-arch model, which is established where the arch axis is parabolic, is applicable.

Originality/value

The formula for shear capacity of prestressed reinforced concrete beams based on this theoretical model can guarantee the effectiveness of the calculation results when the structural properties vary significantly. Engineers can calculate the parameters of prestressed reinforced concrete beams by using the shear capacity calculation formula proposed in this paper.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000