Search results

1 – 10 of 46
Article
Publication date: 22 May 2009

A.K. Khan, B.C. Ray, J. Maiti and S.K. Dolui

The purpose of this paper is to study the effect of monomer composition in core‐shell latex prepared from co‐polymer of styrene‐butylacrylate (BA)‐methyl methacrylate (MMA) and…

Abstract

Purpose

The purpose of this paper is to study the effect of monomer composition in core‐shell latex prepared from co‐polymer of styrene‐butylacrylate (BA)‐methyl methacrylate (MMA) and their paint properties.

Design/methodology/approach

The core‐shell latex was prepared by a stepwise semi‐batch emulsion polymerisation. A set of dispersion was made with the different core‐shell compositions. The core phase consists of a copolymer of styrene‐BA‐acrylic acid (AA) and the shell phase consists of a copolymer of MMA‐AA. The properties of latex were determined by solid content, viscosity, pH and particle size. Subsequently, emulsion paint (PVC‐37 per cent and NVM‐53 per cent) was prepared using core‐shell latex. The paint properties were determined by block resistance, gloss, elongation at break, etc. The particle morphology was characterised with transmission electron microscope (TEM).

Findings

Core‐shell structure of latex was confirmed by TEM. The performance of core‐shell latex has been optimised and the best combination achieved with 25‐40 per cent of hard phase in core‐shell latex.

Research limitations/implications

Although the core‐shell structured latex was prepared from co‐polymer of styrene‐BA‐MMA monomer, the system could be extended with other monomers depending on the end use of surface coating.

Practical implications

The paint industry may use this method to improve paint properties.

Originality/value

The paper shows that, by use of core‐shell latex, it is possible to achieve high‐block resistance, hardness, elasticity and gloss.

Details

Pigment & Resin Technology, vol. 38 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 November 2012

Q. Song, P. Yan, H. Wang, X. Zhu and Y. Xu

The purpose of this paper is to prepare a kind of novel multi‐layer core‐shell latex, and to evaluate the effect of the preparation methodology.

Abstract

Purpose

The purpose of this paper is to prepare a kind of novel multi‐layer core‐shell latex, and to evaluate the effect of the preparation methodology.

Design/methodology/approach

Core‐shell poly(siloxane)/polystyrene/polymethyl methacrylate (PSi/PSt/PMMA) latex particles were prepared by seeded‐emulsion polymerisation with three stages. The core of cured PSi was prepared with octamethyl cyclotetrasiloxane (D4) and tetraethoxysilane (TEOS) by co‐condensation. Using vinyltriethoxysilane (VTEOS) as coupling agent, functional PSi particles with vinyl groups on surfaces were prepared by hydrolysis and condensation of VTEOS in core formation stage. Then, the functional PSi particles were used as seeds to copolymerise with styrene and methyl methacrylate sequentially in shell stage I and stage II to form PSi/PSt/PMMA latex particles.

Findings

FTIR, TEM, DSC and XPS showed that the PSi/PSt/PMMA latex particles had multi‐layer core‐shell structure with cured PSi as core, PSt as shell I and PMMA as shell II.

Research limitations/implications

In the present work, PSi/PSt/PMMA latex particles having multi‐layer core‐shell structure with cured PSi as core, PSt as shell I and PMMA as shell II were prepared. This methodology can be employed to prepare new functional materials for various applications.

Practical implications

Multi‐layer core‐shell particles offer a new area of material science that has wide applications in coatings or modified polymer materials production.

Originality/value

The method developed in the study reported in this paper provides a new strategy to develop new types of core‐shell materials with multi‐layer structure.

Details

Pigment & Resin Technology, vol. 41 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 November 2020

Tantan Shao, Xiaolong Chen and Lijun Chen

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex

Abstract

Purpose

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex has been studied through preparing modified self-cross-linking long fluorocarbon polyacrylate latex. In this paper, nonionic surfactant alcohol ether glycoside (AEG1000) and anionic polymerizable surfactant 1-allyloxy-3-(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) acted as mixed emulsifier and 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) and bis (2-ethylhexyl) maleate (DOM) were used as functional monomers.

Design/methodology/approach

The modified acrylate polymer latex was synthesized through the semi-continuous seeded emulsion polymerization with methyl methacrylate (MMA), butyl acrylate (BA), dodecafluoroheptyl methacrylate (DFMA) and hydroxypropyl methacrylate (HPMA) as main monomers. Potassium persulfate (KPS) was applied to initiate polymerization reaction, nonionic surfactant AEG1000 and DNS-86 acted as emulsifier, KH-570 and DOM were used as functional monomers, respectively.

Findings

The optimum conditions of synthesizing the modified latex were the following. The mass ratio of monomers containing MMA, BA, DFMA, HPMA, KH-570 and DOM was 13.58:13.58:0.90:1.20:0.15:0.60, the usage of initiator KPS was 0.5% of the total weight of monomers and the amount of emulsifier was 7% of all monomers with AEG1000:DNS-86 = 1:1. The results indicated that the conversion of monomer was 99% and the coagulation was about 2.0%.

Originality/value

The resultant latex was modified silane cross-linker KH-570 and DOM, which positively affected the comprehensive properties of latex and its film. Apart from this, the novel mixed emulsifier was used to improve the size and distribution of latex particles and reduce environmental problems caused by the use of emulsifiers.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2010

Zonggen Qin and Weiping Tu

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a…

1110

Abstract

Purpose

The purpose of this paper is to modify the surface property of polyacrylate latex films using only small amounts of fluorinated acrylate and to optimise the results of such a modification.

Design/methodology/approach

The core‐shell particles with polyacrylate rich in core and containing fluorinated polymer rich in shell are prepared by a two‐stage semi‐continuous emulsion polymerisation under kinetically controlled conditions. The surface properties of the latex films produced from the core‐shell particles are investigated by optical goniometer measurement as well as contact angle method.

Findings

The latex films produced from the core‐shell particles exhibited surface energy of around 10 mN/m. The angle resolved X‐ray photoelectron spectrum measurements showed an increased average fluorine concentration in a surface layer thickness of a few nanometres, when compared to the fluorine concentration in the bulk.

Research limitations/implications

Methyl methacrylate, butyl acrylate and N‐methylol acrylamide monomers are used as co‐monomer to form the shell with fluoroalkyl methacrylate. By preparing core‐shell emulsion with a fluoropolymer in the shell phase, the surface property of polyacrylate latex films is efficiently modified by using only small amounts of fluorinated acrylate monomer.

Practical implications

The method developed provided a simple and practical solution to improving the surface property of polyacrylate latex films.

Originality/value

The method for enhancing surface property of polyacrylate latex films is novel and can find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 May 2010

Vilas D. Athawale and Mona A. Kulkarni

The purpose of this paper is to synthesise polyurethane/polyacrylate (PU/AC) core‐shell hybrid latex by emulsion polymerisation (PUA) and interpenetrating hybrid latex by…

Abstract

Purpose

The purpose of this paper is to synthesise polyurethane/polyacrylate (PU/AC) core‐shell hybrid latex by emulsion polymerisation (PUA) and interpenetrating hybrid latex by soap‐free emulsion polymerisation techniques latex interpenetrating polymer networks (LIPN) and to compare their physico‐chemical and thermo‐mechanical properties.

Design/methodology/approach

The interactions between the PU and AC components in hybrid coatings were studied with infrared spectroscopy. Mechanical properties were determined by measuring Shore A hardness, pencil hardness and flexibility of dried films. A particle size analyser and scanning electron microscopy were used to investigate the morphology of hybrid resins. Differential scanning calorimetry and thermogravimetric analysis were performed to investigate the thermal stability of polymeric films.

Findings

The core‐shell hybrids had better physico‐chemical and thermo‐mechanical properties than LIPN hybrids, attributing better interpenetration and entanglement between PU/AC in emulsion polymerisation.

Research limitations/implications

The syntheses of hybrid polymers can be extended for various combinations of acrylate monomers with crosslinkers, as well as for different types of PU ionomers.

Practical implications

The comparative study provides a simple and practical solution to improve performance characteristics of PU/AC hybrid coatings, which also proves to be cost effective.

Originality/value

The findings are of interest to those in surface coatings and adhesive applications.

Details

Pigment & Resin Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2003

M. Umiński and L.M. Saija

A comparison of the difference in chemical nature of re‐dispersible polymer powders useful for the modification of cement based compositions is made. Core‐shell acrylic lattices…

604

Abstract

A comparison of the difference in chemical nature of re‐dispersible polymer powders useful for the modification of cement based compositions is made. Core‐shell acrylic lattices synthesised by multi‐step sequential polymerisation are formulated and spray‐dried to obtain re‐dispersible powders. The heterogeneous acrylic copolymers prepared are characterised by excellent re‐dispersibility, high chemical stability and good application properties.

Details

Pigment & Resin Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 November 2015

Lijun Chen, Zhongbin Bao, Zhengrong Fu and Wen Li

The purpose of this research was to synthesize a novel cross-linked latex copolymerised by butyl acrylate (BA), isobornyl methacrylate (IBOMA), hydroxy propyl methacrylate (HPMA…

Abstract

Purpose

The purpose of this research was to synthesize a novel cross-linked latex copolymerised by butyl acrylate (BA), isobornyl methacrylate (IBOMA), hydroxy propyl methacrylate (HPMA) and dodecafluoroheptyl methacrylate (DFMA). IBOMA is a very useful functional monomer. Its molecular structure not only contains bornyl acetate alkoxy but also includes a double bond, which can be copolymerised with other unsaturated monomers via free radical polymerization. The large nonpolar bicyclic alkyl in bornyl acetate alkoxy offers the polymer chain strong space steric protection, which endows the polymer with some special properties.

Design/methodology/approach

The semi-continuous seeded emulsion polymerisation technology was adopted to copolymerise BA, IBOMA, HPMA and DFMA in the water phase, which was initiated with potassium persulfate (KPS) and emulsified with the mixed surfactants of sodium dodecyl sulphate (SDS) and OP-10.

Findings

The particle size of the latex decreases with an increase in the amount of IBOMA. All the latexes have good mechanical stability and calcium ion stability. The latex has good film-forming property when the IBOMA amount is controlled moderately. The optimal IBOMA amount is 10.00 g. The thermal stability and water resistance of the film are improved.

Practical implications

The latexes can be applied as a binder of coatings and adhesions.

Originality/value

The effect of the amount of IBOMA and BA on the properties of the resultant latex and its film were investigated in detail. In comparison with the latexes copolymerised without IBOMA, the novel latex has better thermal stability and water resistance.

Details

Pigment & Resin Technology, vol. 44 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 June 2020

Haojia Su, Zhengchun Cai, Zhengwei lv, Yongkang Chen and Yongxin Ji

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne…

Abstract

Purpose

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne inkjet which have the advantages of both polyacrylate and epoxy resin. The emulsion was successfully used in the canvas coating for inkjet printing. This paper aims to contribute to the development of novel cationic emulsions for inkjet printing industry.

Design/methodology/approach

In this work, the epoxy acrylate was synthesized from RAFT agent and epoxy resin firstly. Cationic macromolecular emulsifier was prepared by RAFT polymerization, using 2,2’-Azobisisobutyronitrile as initiator, 2-(dimethylamino)ethyl methacrylate and styrene as monomer, which was directly used to prepare the emulsion. The influences of the amount of 2-(dimethylamino)ethyl methacrylate on particle size, zeta potential and water contact angle were studied. Finally, the cationic emulsion was used to print images by inkjet printing.

Findings

The emulsion has the smallest particle size, the highest potential and the highest water contact angle when the DM content is 13 Wt.%. The transmission electron microscopy analysis reveals the latex particles is core-shell sphere with the diameters in the range 120–200 nm. The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Originality/value

The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2002

Javier I. Amalvy

Polyurethane (PU) anionomer having 2‐ethoxymethacrylate terminal groups was prepared in a methyl methacrylate/n‐butyl acrylate mixture as a reactive diluent, following a…

Abstract

Polyurethane (PU) anionomer having 2‐ethoxymethacrylate terminal groups was prepared in a methyl methacrylate/n‐butyl acrylate mixture as a reactive diluent, following a prepolymer mixing process. This prepolymer‐acrylic monomer mixture was chain extended in a water/surfactant solution using different dispersion speeds. Stability tests of PU‐acrylic monomer dispersions before polymerization were performed at different temperatures by following the particle size evolution. After the dispersion process the kinetics of batch emulsion polymerization at 70°C using different concentrations of initiator was investigated. Data are compared with published results of batch emulsion copolymerization of methyl methacrylate/n‐butyl acrylate. The effect of triethylamine, used in the prepolymer synthesis, on the emulsion polymerization of acrylic monomers was also studied. The kinetic results indicate that during emulsion polymerization of PU acrylic mixture, some coagulation takes place, mainly due to changes in ionic strength of the medium, before stable latex particles are formed. The presence of the PU prepolymer seems not to affect the kinetics of batch copolymerization of methyl methacrylate/n‐butyl acrylate monomers.

Details

Pigment & Resin Technology, vol. 31 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 46