Search results

1 – 10 of 195
Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 20 January 2023

Sabah Ben Messaoud

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and…

Abstract

Purpose

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and physical properties of high-strength concretes (HSCs). In the formulations of HSC, aggregates by their high mass and volume proportion play an important role. When selecting aggregates, it is necessary to know their intrinsic properties. These properties influence the performance of concrete, in particular the quality of the granulate cimentary adhesion.

Design/methodology/approach

This experimental study focused on the effect of W/C ratio (0.25, 0.30, 0.35), the effect of replacing a part of cement by silica fume (SF) (8%), the effect of fraction of aggregate on properties of fresh and hardened concrete, the effect of different environment conversation like drinking water and sea water on compressive strength and the study of absorption of water and softening using the mix design method of the University of Sherbrooke combined with the Dreux-Gorisse method which gives good results.

Findings

At the end of our work, the examination of the results obtained made it possible to establish the correlations between the formulations studied and the physicomechanical characteristics of the concrete compositions (HSC25, HSC16, HSC8). The results of this study show that the use of three granular classifications (DMAX8, DMAX16 and DMAX25) and three report W/C (0.25, 0.30 and 0.35) in two different conservation environment (drinking water and sea water) give HSCs, HSC25 with an W/C = 0.25 ratio has reached the largest mechanical strength of 90 MPa for different environments of conservation. For selecting aggregates, it is necessary to know their intrinsic properties, these properties influence the strength of concrete. In general, there is a slight decrease in the compressive resistance of the specimens stored in seawater, it can be said that the conservation life has not had effect on the resistance (28 days). The effect of aggressive environment can appear in the long term.

Research limitations/implications

Mixed design and concrete fabrication with a 28-day compressive strength of up to 68 MPa or more of 90 MPa can now be possible used in Jiel (Algeria), and it should no longer be considered to be used only in an experimental domain. Addition of SF in concrete showed good development of strength between 7 and 28 days, depending on the design of the mix.

Practical implications

Concrete containing 8% SF with W/B of 0.25 has higher compressive strength than the other concretes, and concretes with SF are more resistant than concretes without SF, so it is possible to have concrete with a compressive strength of 82 MPa for W/C 0.25 without SF. Like as a result, we can avoid the use of SF to affect the strength of concrete at compressive strength of 68 MPa, and a slump of 21 cm, because the SF is the most expensive ingredient used in the composition of concrete and is therefore very important economically. One of the main factors of production of HSC above 90 MPa is use of aggregate DMAX25, which is stronger with W/B of 0.25 and 0.30.

Social implications

This mixtures leads to a very dense microstructure and low porosity and produces increased permeability of HSC and is able to resist the penetration of aggressive agents. This combination has a positive effect on the economy of concrete.

Originality/value

The combination of the Dreux-Gorisse method with the Sherbrook method is very beneficial for determining the percentage of aggregates used, and the use of coarse aggregates of Jijel to obtain HSC with 90 MPa and 16 cm of workability.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 13 October 2022

Arka Ghosh, Jemal Abawajy and Morshed Chowdhury

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the…

Abstract

Purpose

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the effective utilisation of emergent digital technologies and a need for a managerial shift for its smooth adoption.

Design/methodology/approach

A total of 3,046 peer-reviewed journal review articles covering Internet of Things (IoT), blockchain, building information modelling (BIM) and digital technologies within the construction sector were reviewed using scientometric mapping and weighted mind-map analysis techniques.

Findings

Prominent research clusters identified were: practice-factor-strategy, system, sustainability, BIM and construction worker safety. Leading countries, authors, institutions and their collaborative networks were identified with the UK, the USA, China and Australia leading this field of research. A conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Originality/value

The study traces the origins of the initial application of Industry 4.0 concepts in the construction field and reviews available literature from 1983 to 2021. It raises awareness of the latest developments and potential landscape realignment of the construction industry through digital technologies conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 12 January 2024

Ernesto Cardamone, Gaetano Miceli and Maria Antonietta Raimondo

This paper investigates how two characteristics of language, abstractness vs concreteness and narrativity, influence user engagement in communication exercises on innovation…

Abstract

Purpose

This paper investigates how two characteristics of language, abstractness vs concreteness and narrativity, influence user engagement in communication exercises on innovation targeted to the general audience. The proposed conceptual model suggests that innovation fits well with more abstract language because of the association of innovation with imagination and distal construal. Moreover, communication of innovation may benefit from greater adherence to the narrativity arc, that is, early staging, increasing plot progression and climax optimal point. These effects are moderated by content variety and emotional tone, respectively.

Design/methodology/approach

Based on a Latent Dirichlet allocation (LDA) application on a sample of 3225 TED Talks transcripts, the authors identify 287 TED Talks on innovation, and then applied econometric analyses to test the hypotheses on the effects of abstractness vs concreteness and narrativity on engagement, and on the moderation effects of content variety and emotional tone.

Findings

The authors found that abstractness (vs concreteness) and narrativity have positive effects on engagement. These two effects are stronger with higher content variety and more positive emotional tone, respectively.

Research limitations/implications

This paper extends the literature on communication of innovation, linguistics and text analysis by evaluating the roles of abstractness vs concreteness and narrativity in shaping appreciation of innovation.

Originality/value

This paper reports conceptual and empirical analyses on innovation dissemination through a popular medium – TED Talks – and applies modern text analysis algorithms to test hypotheses on the effects of two pivotal dimensions of language on user engagement.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 14 December 2023

Paola Bellis, Silvia Magnanini and Roberto Verganti

Taking the dialogic organizational development perspective, this study aims to investigate the framing processes when engaging in dialogue for strategy implementation and how…

Abstract

Purpose

Taking the dialogic organizational development perspective, this study aims to investigate the framing processes when engaging in dialogue for strategy implementation and how these enable the evolution of implementation opportunities.

Design/methodology/approach

Through a qualitative exploratory study conducted in a large multinational, the authors analyse the dialogue and interactions among 25 dyads when identifying opportunities to contribute to strategy implementation. The data analysis relies on a process-coding approach and linkography, a valuable protocol analysis for identifying recursive interaction schemas in conversations.

Findings

The authors identify four main framing processes – shaping, unveiling, scattering and shifting – and provide a framework of how these processes affect individuals’ mental models through increasing the tangibility of opportunities or elevating them to new value hierarchies.

Research limitations/implications

From a theoretical perspective, this study contributes to the strategy implementation and organizational development literature, providing a micro-perspective of how dialogue allows early knowledge structures to emerge and shape the development of opportunities for strategy implementation.

Practical implications

From a managerial perspective, the authors offer insights to trigger action and change in individuals to contribute to strategy when moving from formulation to implementation.

Originality/value

Rather than focusing on the structural control view of strategy implementation and the role of the top management team, this study considers strategy implementation as a practice and what it takes for organizational actors who do not take part in strategy formulation to enact and shape opportunities for strategy implementation through constructive dialogue.

Details

Journal of Knowledge Management, vol. 28 no. 11
Type: Research Article
ISSN: 1367-3270

Keywords

Open Access
Article
Publication date: 14 September 2022

Petra Pekkanen and Timo Pirttilä

The aim of this study is to empirically explore and analyze the concrete tasks of output measurement and the inherent challenges related to these tasks in a traditional and…

Abstract

Purpose

The aim of this study is to empirically explore and analyze the concrete tasks of output measurement and the inherent challenges related to these tasks in a traditional and autonomous professional public work setting – the judicial system.

Design/methodology/approach

The analysis of the tasks is based on a categorization of general performance measurement motives (control-motivate-learn) and main stakeholder levels (society-organization-professionals). The analysis is exploratory and conducted as an empirical content analysis on materials and reports produced in two performance improvement projects conducted in European justice organizations.

Findings

The identified main tasks in the different categories are related to managing resources, controlling performance deviations, and encouraging improvement and development of performance. Based on the results, key improvement areas connected to output measurement in professional public organizations are connected to the improvement of objectivity and fairness in budgeting and work allocation practices, improvement of output measures' versatility and informativeness to highlight motivational and learning purposes, improvement of professional self-management in setting output targets and producing outputs, as well as improvement of organizational learning from the output measurement.

Practical implications

The paper presents empirically founded practical examples of challenges and improvement opportunities related to the tasks of output measurement in professional public organization.

Originality/value

This paper fulfils an identified need to study how general performance management motives realize as concrete tasks of output measurement in justice organizations.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Access

Year

Last week (195)

Content type

Article (195)
1 – 10 of 195