Search results

1 – 10 of over 5000
Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Book part
Publication date: 21 November 2018

Jun Xiu Low, Poi Ngian Shek and Mahmood Md Tahir

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite

Abstract

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite slabs system relies on the bonding action between the concrete and the steel deck, the shear connections and the cross-sectional resistance of steel beam. However, structural behaviour of composite slab is a complex phenomenon and therefore experimental study is often conducted to establish the actual strength of the structure under ultimate load capacity. The main objective of this study is to determine the structural behaviour of composite slab system until ultimate limit state. Total of two specimens are examined in order to obtain failure mechanism of the composite structure under full load capacity. A new design approach of composite slab for roofing system are proposed in this study to construct a composite slab system that can float in the water but not wash away by flood. The lightweight materials in this composite construction are cold-formed steel and foam concrete. The system focuses on the concept of Industrialised building system (IBS) to reduce the cost and construction time.

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Keywords

Article
Publication date: 6 December 2021

Yu Liu, Shan-Shan Huang and Ian Burgess

In order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.

141

Abstract

Purpose

In order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.

Design/methodology/approach

The component-based models of the bare-steel ductile connection and composite ductile connection have been proposed and incorporated into the software Vulcan to facilitate global frame analysis for performance-based structural fire engineering design. These component-based models are validated against detailed Abaqus FE models and experiments. A series of 2-D bare-steel frame models and 3-D composite frame models with ductile connections, idealised rigid and pinned connections, have been created using Vulcan to compare the fire performance of ductile connection with other connection types in bare-steel and composite structures.

Findings

The comparison results show that the proposed ductile connection can provide excellent ductility to accommodate the axial deformation of connected beam under fire conditions, thus reducing the axial forces generated in the connection and potentially preventing the premature brittle failure of the connection.

Originality/value

Compared with conventional connection types, the proposed ductile connection exhibits considerable deformability, and can potentially enhance the robustness of structures in fire.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2017

Simon Mwangi

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Abstract

Purpose

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Design/methodology/approach

The investigation is conducted by carrying out a 3-D thermomechanical analysis of a composite floor similar to the one involved in the fire using ANSYS. Four fire scenarios are investigated, with each producing a unique stress – strain pattern. The results obtained are compared with the observations made after the fire and inferences drawn.

Findings

The results obtained are found to be correlated with the observations made after the fire. The performance of the composite floor is found to be dominated by development of large strains, leading to large deflections. Furthermore, colder parts of the structure, through redistribution of forces, are found to have a profound impact on the ability of a composite floor to resist heating effects. From the findings, it is concluded that connections’ design, occurrence of membrane action and thermal restraints were the key reasons the floor did not fail.

Originality value

The study takes a more forensic approach. This is a departure from majority of published literature, where comparison is usually between experimental and numerical results. By comparing the findings from a real fire with those of a numerical investigation, the study provides an insight into the accuracy of applying numerical models for the prediction of effects of fire on structural behaviour.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 January 2018

Oliver Bahr

The purpose of this study is to gain a deeper understanding of the structural behaviour of fire-exposed unbraced composite frames. Designers to date paid little attention to…

Abstract

Purpose

The purpose of this study is to gain a deeper understanding of the structural behaviour of fire-exposed unbraced composite frames. Designers to date paid little attention to unbraced one-bay composite frames as structural system. There are two main reasons for this. First, codes lack simplified methods for the fire design of these frames due to their sway and the linked P-Δ effects when subjected to fire, which complicates the design. Second, it is demanding to construct external composite joints for the regarded one-bay frames. Thus, external joints in composite constructions are mostly constructed as steel joints. Nevertheless, these frames offer advantages. These include increased usable space and flexibility in the building’s use, large spans, fast construction times and inherent fire resistance.

Design/methodology/approach

To profit from these benefits, two different external semi-rigid composite joint were developed for the considered one-bay composite frames. The first solution based on concrete-filled steel tube columns and the second on concrete-filled double skin tube columns. Furthermore, a numerical model was established to study the fire performance of unbraced composite frames. The model was validated against four fire tests on isolated composite joints and two large-scale fire tests on unbraced composite frames.

Findings

Overall, the predictions of the numerical model were in good agreement with the test results. Thus, the numerical model is appropriate for further investigations on the fire performance of unbraced composite frames.

Originality/value

The sequence of construction results in significant stresses in the steel section, which creates difficulties in numerical modelling and may account for the relatively few studies carried out at room temperature. For the fire design, there was, to the best knowledge of the author, to date no numerical model available that was capable of considering the sequence of construction.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 February 2012

Yangjun Luo and Alex Li

Bonded steel-concrete is one new type composite structure in civil engineering domain. Generally, for steel-concrete composite structures, the steel beam and the concrete are…

Abstract

Bonded steel-concrete is one new type composite structure in civil engineering domain. Generally, for steel-concrete composite structures, the steel beam and the concrete are connected by means of shear connectors. This work consists in analyzing the design optimization of the steel-concrete composite beam connected by adhesives instead of metal connectors. The principal parameters, including elastic modulus of adhesive, the adhesive layer thickness, the bonding strength and the bonding area, which influence the mechanical behaviours of the bonded steel-concrete composite structures, have been investigated. Finally, an example of design optimization of a single span adhesive bonded steel-concrete composite beam is proposed.

Details

World Journal of Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2019

Fariz Aswan Ahmad Zakwan, Ruqayyah Ismail, Renga Rao Krishnamoorthy and Azmi Ibrahim

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite…

Abstract

Purpose

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite element simulation.

Design/methodology/approach

Temperature development along the CSB were analysed and used for parametric investigation. In addition, this research paper investigates the novelty application of various intumescent coating thicknesses covering the whole CSB to cut down the temperature development along the beam section.

Findings

From the simulation outcomes, it shows that intumescent coating has a significant effect in reducing the temperature development along the CSB section. Thicker intumescent coating contributes to a higher temperature drop at the bottom tee section than the upper tee section.

Originality/value

The use of structural CSB has gained popularity among engineers and architects. This type of beam allows serviceability ducts and pipes to pass through the main steel web section under the flooring system, thus providing larger headroom for designers. Nevertheless, in any structural steel building, it is highly risky for CSB to be exposed to fire hazard if it were triggered accidentally. To mitigate and reduce fire exposure risk which might compromise the strength and stiffness of CSB, a passive fire protection is proposed to minimise the risk. One of the common passive fire protection materials used for steel beam section is intumescent coating. Intumescent coating is by far the cheapest solution to protect CSB as compared to other passive fire protection system. Intumescent coating can absorb some portion of heat exposure which subsequently translates a lower temperature development along the CSB section.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 October 2021

Lisa Choe, Selvarajah Ramesh, Xu Dai, Matthew Hoehler and Matthew Bundy

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building…

Abstract

Purpose

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.

Design/methodology/approach

The fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.

Findings

Although the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.

Originality/value

This work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 July 2019

Ahmed Allam, Ayman Nassif and Ali Nadjai

This paper aims to investigate computationally and analytically how different levels of restraint from surrounding structure, via catenary action in beams, affect the survival of…

Abstract

Purpose

This paper aims to investigate computationally and analytically how different levels of restraint from surrounding structure, via catenary action in beams, affect the survival of steel framed structures in fire. This study focuses on examining the mid-span deflection and the tensile axial force of a non-composite heated steel beam at large deflection that is induced by the catenary action during exposure to fires. The study also considers the effect of the axial horizontal restraints, load-ratio, beam temperature gradient and the span/depth ratio. It was found that these factors influence the heated steel beam within steel construction and its catenary action at large deflection. The study suggests that this may help the beam to hang to the surrounding cold structure and delay the run-away deflection when the tensile axial force of the beam has been overcome.

Design/methodology/approach

This paper is part one of the parametric study and discusses both the effect of the axial horizontal restraints and load-ratio on the heated steel-beam. Reliance on the prescriptive standard fire solutions may lead to an unpredicted behaviour of the structure members if the impact of potential real fires is not considered.

Findings

Variation of the horizontal end-restraint level has a major effect on the behaviour of the beam at high deflection, and the loading on a beam at large displacement can be carried effectively by catenary behaviour. An increase of axial horizontal stiffness helps the catenary action to prevent run-away at lower deflections. The studies also investigated the influence of varying the load ratio on the behaviour of the heated beam at large deflection and how it affects the efficacy of the catenary action. The study suggests that care should be taken when selecting the load ratio to be used in the design.

Originality/value

In a recent work, the large deflection behaviours of axially restrained corrugated web steel beam (CWSB) at elevated temperatures were investigated using a finite element method (Wang et al., 2014). Parameters that greatly affected behaviours of CWSB at elevated temperatures were the load ratio, the axial restraint stiffness ratio and the span–depth ratio. Other works included numerical studies on large deflection behaviours of restrained castellated steel beams in a fire where the impact of the catenary action is considered (Wang, 2002). The impact of the induced axial forces in the steel beam during cooling stage of a fire when the beam temperature decreases, if thermal shortening of the beam is restrained, large tensile forces may be induced in the beam (Wang, 2005; Allam et al., 2002). A performance-based approach is developed for assessing the fire resistance of restrained beams. The approach is based on equilibrium and compatibility principles, takes into consideration the influence of many factors, including fire scenario, end restraints, thermal gradient, load level and failure criteria, in evaluating fire resistance (Dwaikat and Kodur, 2011; Allam et al., 1998).

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2016

Kristi L. Selden and Amit H. Varma

The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the thermal…

Abstract

Purpose

The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the thermal and structural behavior of composite beams under fire loading.

Design/methodology/approach

The model was benchmarked using experimental test data, and it accounts for temperature-dependent material properties, force-slip-temperature relationship for the shear studs and concrete cracking.

Findings

It was determined that composite beams can be modeled with this sequentially coupled thermal-structural 3D FEM to predict the displacement versus bottom flange temperature response and associated composite beam failure modes, including compression failure in the concrete slab, runaway deflection because of yielding of the steel beam or fracture of the shear studs.

Originality/value

The Eurocode stress-strain-temperature (σ-ε-T) material model for structural steel and concrete conservatively predict the composite beam deflections at temperatures above 500°C. Models that use the National Institute of Standards and Technology (NIST) stress-strain-temperature (σ-ε-T) material model more closely match the measured deflection response, as compared to the results using the Eurocode model. However, in some cases, the NIST model underestimates the composite beam deflections at temperatures above 500°C.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 5000