Search results

1 – 10 of over 7000
Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Article
Publication date: 25 July 2024

Sahar Valipour Parkouhi, AbdolHamid Safaei Ghadikolaei, Hamidreza Fallah Lajimi and Negin Salimi

One of the achievements of the fourth industrial revolution is smart manufacturing, a manufacturing system based on Industry 4.0 technologies that will increase systems'…

Abstract

Purpose

One of the achievements of the fourth industrial revolution is smart manufacturing, a manufacturing system based on Industry 4.0 technologies that will increase systems' reliability, efficiency and productivity. Despite the many benefits, some barriers obstruct the implementation of this manufacturing system. This study aims to analyze these barriers.

Design/methodology/approach

One of the measures that must be taken is to identify and try to remove these barriers, which involves identifying the stakeholders and components of technology associated with each barrier. As such, the primary purpose of this paper is to present a systematic literature review in the field of smart manufacturing with a focus on barriers to implementation related to the stakeholders and components of technology.

Findings

This research conducted a systematic literature review in Scopus and Web of Science databases and considered the studies published until 2021 were examined. The central question of this paper is answered based on this literature review, in which 133 related studies and 15 barriers were identified.

Practical implications

The significant gap observed in the literature review is that no research has been conducted to determine the stakeholders and components of technology related to the barriers, making it a potentially worthwhile subject for future research. In addition, the results of this study may help managers to implement smart manufacturing.

Originality/value

This study provides two main originalities. The former is helpful information for managers to make effective decisions when they face smart manufacturing barriers. The latter is related to identifying critical research gaps through systematic literature review.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Article
Publication date: 1 December 2023

Xufan Zhang, Xue Fan and Mingke He

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of…

Abstract

Purpose

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of this study is to investigate how China's HEEM industry has been affected by the GSC reconfiguration, as well as its short- and long-term strategies.

Design/methodology/approach

The authors adopted a multi-method approach. Interviews were conducted in Phase 1, while a three-round Delphi survey was conducted in Phase 2 to reach consensus at the industry level.

Findings

The GSC reconfiguration affected China's HEEM supply chain (SC). Its direct effects include longer lead times, higher purchasing prices and inconsistent supply and inventory levels of key imported components and materials. Its indirect effects include inconsistent product quality and cash flows. In the short term, China's HEEM enterprises have sought to employ localized substitutes, while long-term strategies include continuous technological innovation, industry upgrades and developing SC resilience.

Originality/value

This study not only encourages Chinese HEEM enterprises to undertake a comprehensive examination of their respective industries but also provides practical insights for SC scholars, policymakers and international stakeholders interested in how China's HEEM industry adapts to the GSC reconfiguration and gains global market share.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 13 June 2023

Antonio Bacciaglia and Alessandro Ceruti

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent…

Abstract

Purpose

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent and collaborative heads that may work on the same part simultaneously while still producing an appealing final product. The purpose of this paper is to propose a simple and repeatable approach for toolpath planning for gantry-based n independent extrusion heads with effective collision avoidance management.

Design/methodology/approach

This research presents an original toolpath planner based on existing slicing software and the traditional structure of G-code files. While the computationally demanding component subdivision task is assigned to computer-aided design and slicing software to build a standard G-code, the proposed algorithm scans the conventional toolpath data file, quickly isolates the instructions of a single extruder and inserts brief pauses between the instructions if the non-priority extruder conflicts with the priority one.

Findings

The methodology is validated on two real-life industrial large-scale components using architectures with two and four extruders. The case studies demonstrate the method's effectiveness, reducing printing time considerably without affecting the part quality. A static priority strategy is implemented, where one extruder gets priority over the other using a cascade process. The results of this paper demonstrate that different priority strategies reflect on the printing efficiency by a factor equal to the number of extrusion heads.

Originality/value

To the best of the authors’ knowledge, this is the first study to produce an original methodology to efficiently plan the extrusion heads' trajectories for a collaborative material extrusion architecture.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 August 2024

Fabian Kranert, Moritz Hinkelmann, Roland Lachmayer, Jörg Neumann and Dietmar Kracht

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components…

Abstract

Purpose

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components, specifically optomechanical parts. The potential of this approach is demonstrated by manufacturing function-integrated optomechanics for a low-power solid-state laser system.

Design/methodology/approach

For the production of function-integrated additively manufactured optomechanics using the FFF process, essential components and subsystems have been identified for which no design guidelines are available. This includes guidelines for integrating elements, particularly optics, into a polymer structure as well as guidelines for printing functional threads and ball joints. Based on these results, combined with prior research, a function-integrated low-power solid-state laser optomechanic was fabricated via the FFF process, using a commercial 3D printer of the type Ultimaker 3. The laser system's performance was assessed and compared to a reference system that employed commercial optomechanics, additionally confirming the design guidelines derived from the study.

Findings

Based on the design goal of function integration, the existing design guidelines for the FFF process are systematically extended. This success is demonstrated by the fabrication of an integrated optomechanic for a solid-state laser system.

Practical implications

Based on these results, scientists and engineers will be able to use the FFF process more extensively and benefit from the possibilities of function-integrated manufacturing.

Originality/value

Extensive research has been published on additive manufacturing of optomechanics. However, this research often emphasizes only cost reduction and short-term availability of components by reprinting existing parts. This paper aims to explore the capabilities of additive manufacturing in the production of function-integrated components to reduce the number of individual parts required, thereby decreasing the workload for system assembly and leading to an innovative production process for optical systems. Consequently, where needed, it provides new design guidelines or extends existing ones and verifies them by means of test series.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 October 2023

N. Harikannan, S. Vinodh and Jiju Antony

The purpose of this study is to discuss the construction of a structural measurement model utilizing structural equation modelling (SEM) to confirm the link between Industry 4.0…

Abstract

Purpose

The purpose of this study is to discuss the construction of a structural measurement model utilizing structural equation modelling (SEM) to confirm the link between Industry 4.0 technologies, sustainable manufacturing practices and organizational sustainable performance. Relationship among the paradigm has yet to be fully investigated, necessitating a more conceptual and empirical examination on what impact they have on organizational sustainable performance when used together.

Design/methodology/approach

Industry 4.0 and sustainable production practices aim to progress a company's business competitiveness, forming sustainable development that benefits manufacturing companies. The aim of the study is to analyze the relationship between constructs that lead to operational excellence in firms that use Industry 4.0 technologies and sustainable manufacturing techniques. Experts from diverse automotive industries, who are applying both Industry 4.0 and sustainable manufacturing practices, provided data for the study.

Findings

Statistical estimations (hypotheses) are created to substantiate the measurement model that has been developed. The structural model was analysed, and the findings were discussed. The statistical estimate is either approved or rejected based on the findings. According to the conclusions of this study, strong link exists between Industry 4.0 technologies and sustainable manufacturing practices that affect organizational sustainable performance environmentally, economically and socially.

Practical implications

The research was conducted in the framework of automobile component manufacturing companies in India. The outcomes of the study are practically feasible.

Originality/value

The authors' novel contribution is the construction of a structural model with Industry 4.0 technologies and sustainable manufacturing practices into account.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 16 September 2024

Jaizuluddin Mahmud, Pudji Hastuti, Muhammad Fauzan Rafif, Lambas Parlaungan Panggabean, Irawan Santoso, Sarjono, Manifas Zubair, Rizki Arizal Purnama, Andika Dwi Saputra, Yosa Permata Shafira and Angy Sonia

The purpose of this study is to determine research areas that are most favorable in supporting the development and manufacturing of electric vehicle (EV) components locally in…

Abstract

Purpose

The purpose of this study is to determine research areas that are most favorable in supporting the development and manufacturing of electric vehicle (EV) components locally in Indonesia for 2025–2035. Therefore, will provide direction for the formulation of the related government policies and programs. Consequently, an EV technology research priority must be identified.

Design/methodology/approach

A technology foresight (TF) procedure which consists of a STEEPV analysis, followed by scenarios development and expert elicitation techniques, was conducted to determine an EV technology research priority that may direct future specific local component innovations, and therefore businesses.

Findings

The results of this study indicate that research in a range of EV battery technologies, technologies relating to a variety of key components (to increase local content) and autonomous systems were important to support the local development and manufacturing of EV components in Indonesia.

Research limitations/implications

In this study, the scenarios development process was conducted based on selected available experts, mostly internally from BRIN. Some biased opinions may be present.

Originality/value

There have not been any TF studies regarding the development of EV technology research priority in Indonesia.

Details

foresight, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 30 April 2024

Luigi Morfini, Fankai Meng, Margherita Beretta, Jozef Vleugels, Roberto Spina and Eleonora Ferraris

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to…

Abstract

Purpose

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to manufacturing ceramic components.

Design/methodology/approach

A commercial ZrO2 filament was selected and analysed by infra-red (IR) spectroscopy, rheology and thermo-gravimetry. The influence of the print parameters (layer thickness, flow rate multiplier, printing speed) and sintering cycle were investigated to define a suitable printing and sintering strategy. Biaxial flexure tests were applied on sintered discs realised with optimised printing strategies, and the results were analysed via Weibull statistics to evaluate the mechanical properties of printed components. The hardness and thermal conductivity of sintered components were also tested.

Findings

Layer thickness and flow rate multiplier of the printing process were proved to have significant effect on the density of as-printed parts. Optimised samples display a sintered density >99% of the theoretical density, 20% linear sintering shrinkage, a characteristic flexural strength of 871 MPa with a Weibull modulus of 4.9, a Vickers hardness of 12.90 ± 0.3 GPa and a thermal conductivity of 3.62 W/mK. Gyroids were printed for demonstration purposes.

Originality/value

To the best of the authors’ knowledge, this work is the first to apply biaxial flexure tests and Weibull statistics to additively manufactured MEX zirconia components, hence providing comparable results to other additive technologies. Moreover, fractography analysis builds the connection between printing defects and the fracture mechanism of bending. This study also provides guidelines for fabricating high-density zirconia components with MEX.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 December 2023

Vikram Singh, Nirbhay Sharma and Somesh Kumar Sharma

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in…

Abstract

Purpose

Every company or manufacturing system is vulnerable to breakdowns. This research aims to analyze the role of Multi-Agent Technology (MAT) in minimizing breakdown probabilities in Manufacturing Industries.

Design/methodology/approach

This study formulated a framework of six factors and twenty-eight variables (explored in the literature). A hybrid approach of Multi-Criteria Decision-Making Technique (MCDM) was employed in the framework to prioritize, rank and establish interrelationships between factors and variables grouped under them.

Findings

The research findings reveal that the “Manufacturing Process” is the most essential factor, while “Integration Manufacturing with Maintenance” is highly impactful on the other factors to eliminate the flaws that may cause system breakdown. The findings of this study also provide a ranking order for variables to increase the performance of factors that will assist manufacturers in reducing maintenance efforts and enhancing process efficiency.

Practical implications

The ranking order developed in this study may assist manufacturers in reducing maintenance efforts and enhancing process efficiency. From the manufacturer’s perspective, this research presented MAT as a key aspect in dealing with the complexity of manufacturing operations in manufacturing organizations. This research may assist industrial management with insights into how they can lower the probability of breakdown, which will decrease expenditures, boost productivity and enhance overall efficiency.

Originality/value

This study is an original contribution to advancing MAT’s theory and empirical applications in manufacturing organizations to decrease breakdown probability.

1 – 10 of over 7000