Search results

1 – 10 of 40
Article
Publication date: 9 April 2024

George Kwame Fobiri, Ebenezer Kofi Howard, Solomon Marfo Ayesu, Ama Kour Timpabi and Diana Oppong

The purpose of this study is to investigate the value of Ghanaian weaving art tradition to humanity from socio-cultural and economic points of view. This study sought to answer…

Abstract

Purpose

The purpose of this study is to investigate the value of Ghanaian weaving art tradition to humanity from socio-cultural and economic points of view. This study sought to answer questions such as “What is the interest of researchers regarding Ghanaian textile weaving art tradition?”, “To what extent has weaving art tradition projected the Ghanaian culture?” and “What is the socio-economic value of Ghanaian weaving art tradition?”

Design/methodology/approach

The systematic literature review approach was used to analyse data obtained from the Scopus online database. The PRISMA framework was adopted to select 22 relevant studies for analysis and conclusions. Also, the VOSviewer software was used to analyse and understand the co-occurrence of keywords.

Findings

It was revealed that Ghanaian weaving art tradition stands as a major craft that projects Ghana globally. Researchers around the world keep adding knowledge on Ghanaian traditional weaving and its value to humanity, resulting in a significant rise recently in the publication trend. Also, the rich cloth from the art is celebrated annually to invite people around the globe to learn the Ghanaian culture for social development. This study again found that traditional weaving serves as a major source of income for weavers and marketers of indigenous Ghanaian woven fabrics.

Practical implications

The findings of this study serve as a wake-up call to the Government of Ghana, institutional actors and national leaders to practically engage in the projection of the local art by playing individual roles such as financially supporting the craftsmen, initiating and implementing appropriate policies and displaying the local cloth on international occasions. This will make the local art more attractive for effective marketing and cultural preservation.

Originality/value

With reliable information extracted from the Scopus online database, this study presents original results and makes appropriate suggestions worth adopting for the improvement of the Ghanaian weaving art tradition.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 November 2022

Xiaoping Lin, Xiaoyan Li, Jiming Yao, Xianghong Li and Jianlin Xu

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible…

Abstract

Purpose

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible CC/NiS/a-NiS electrodes with self-supporting structure by loading hydrothermally synthesized a-NiS particles along with nano-NiS on carbon cloth by electroplating method.

Design/methodology/approach

The effects of current densities, temperatures and pH values on the loading amount and uniformity of the active substances during the plating process were investigated on the basis of optimization of surface morphology, crystalline structure and electrochemical evaluation as the cyclic voltammetry curves, constant current charge–discharge curves and AC impedance.

Findings

The a-NiS particles on CC/NiS/a-NiS were mostly covered by the plated nano-NiS, which behaved as a bulge and provided a larger specific surface area. The CC/NiS/a-NiS electrode prepared with the optimized parameter exhibited a specific capacitance of 115.13 F/g at a current density of 1 A/g and a Coulomb efficiency of 84% at 5 A/g, which is superior to that of CC/NiS electrode prepared by electroplating at a current density of 10 mA/cm2, a temperature of 55°C and a pH of 4, demonstrating its fast charge response of the electrode and potential application in wearable electronics.

Originality/value

This study provides an integrated solution for the development of specifically structured NiS-based electrode for supercapacitor with simple process, low cost and high electrochemical charge/discharge performance, and the simple and easy-to-use method is also applicable to other electrochemically active composites.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2024

Boxiang Xiao, Zhengdong Liu, Jia Shi and Yuanxia Wang

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well…

Abstract

Purpose

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well as virtual clothing simulation is an attractive research issue both in clothing industry and computer graphics.

Design/methodology/approach

Physics-based method is an effective way to model dynamic process and generate realistic clothing animation. Due to conceptual simplicity and computational speed, mass-spring model is frequently used to simulate deformable and soft objects follow the natural physical rules. We present a physics-based clothing pattern generating framework by using scanned human body model. After giving a scanned human body model, first, we extract feature points, planes and curves on the 3D model by geometric analysis, and then, we construct a remeshed surface which has been formatted to connected quad meshes. Second, for each clothing piece in 3D, we construct a mass-spring model with same topological structures, and conduct a typical time integration algorithm to the mass-spring model. Finally, we get the convergent clothing pieces in 2D of all clothing parts, and we reconnected parts which are adjacent on 3D model to generate the basic clothing pattern.

Findings

The results show that the presented method is a feasible way for clothing pattern generating by use of scanned human body model.

Originality/value

The main contribution of this work is twofold: one is the geometric algorithm to scanned human body model, which is specially conducted for clothing pattern design to extract feature points, planes and curves. This is the crucial base for suit clothing pattern generating. Another is the physics-based pattern generating algorithm which flattens the 3D shape to 2D shape of cloth pattern pieces.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 April 2024

Remya Lathabhavan and Revathy Lathabhavan

The adverse environmental impacts of menstrual products are a significant concern because of their widespread use and non-biodegradability. With various global and regional…

Abstract

Purpose

The adverse environmental impacts of menstrual products are a significant concern because of their widespread use and non-biodegradability. With various global and regional initiatives on sustainability, there is now greater public awareness about environmental protection. This heightened awareness has resulted in the exploration of alternative methods to reduce waste, such as the development and use of sustainable menstrual products. This study aims to examine the factors that influence Indian women’s purchasing intention in relation to sustainable menstrual products. The study uses the Stimulus–Organism–Behavior–Consequence (SOBC) theory as the appropriate grounded theory to explain these determinants.

Design/methodology/approach

Cross-sectional data were collected from 720 women who have been using sustainable menstrual products. For analysing the model, the study performed structural equation modelling using AMOS.

Findings

The study’s results indicated that health consciousness, sustainability knowledge and environmental responsibility are positively associated with self-identity and mindfulness. Additionally, the study found that organism states have a positive impact on the purchase intention of sustainable menstrual products. Furthermore, there was a significant relationship observed between purchase intention and mindful consumption. The study also discovered significant positive relationships between satisfaction and key associations.

Originality/value

This study may be considered pioneering, as it establishes a connection between the usage of sustainable menstrual products and concepts such as mindfulness and mindful consumption.

Details

Journal of Indian Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4195

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2024

Varsha Vihan, V.P. Singh, Pramila Umaraw, Akhilesh Kumar Verma, Shardanand Verma and Chirag Singh

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this…

Abstract

Purpose

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this examination, this study aims to evaluate the potential effects of licorice powder on extending the shelf life, maintaining quality attributes and preserving the overall stability of curd balls when stored at refrigeration temperatures.

Design/methodology/approach

Licorice powder, in varying quantities (1%, 2% and 3%), was incorporated into curd balls alongside a control group lacking licorice (0%). These batches were subsequently stored for 25 days under refrigeration at a temperature of 4 ± 1ºC, using aerobic packaging conditions. During this storage period, the samples were regularly monitored and analyzed for various parameters to assess changes in their properties and qualities.

Findings

The findings indicated that in the treatment groups, pH and titratable acidity were notably lower than those in the control group (p = 0.05). Curd balls enriched with licorice powder exhibited significantly higher levels of 2, 2-diphenyl-1-picrylhydrazyl, 2-2-azinobis-3ethylbenthiazoline-6-sulphonic acid and total phenolic contents compared to the control (p = 0.05). Furthermore, curd balls containing licorice powder displayed notably lower levels of peroxide, thiobarbituric acid reactive substances and free fatty acids in comparison to the control (p = 0.05). Among all samples, T3 (3%) demonstrated significantly less microbial growth (p = 0.05) than the other groups. Conversely, the sensory panel rated T2 significantly higher than T3 (p = 0.05).

Originality/value

The investigation highlights that curd balls enriched with 2.0% licorice powder demonstrated significant efficacy in preventing the deterioration of physicochemical attributes, enhancing antioxidant capacity, restraining lipid oxidation, curbing microbial growth and ultimately exhibiting the most favorable organoleptic properties among the tested variations. This finding underscores the potential of incorporating 2.0% licorice powder as an effective agent for bolstering the storage stability and overall quality of curd balls during refrigerated storage.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 30 August 2023

Roswitha Skare

The purpose of this study is to show that the neo-documentary – or complimentary – approach in Library and Information Science by no means is conservative, but highly necessary…

Abstract

Purpose

The purpose of this study is to show that the neo-documentary – or complimentary – approach in Library and Information Science by no means is conservative, but highly necessary also in today's digitized media landscape. An example from a digitized photo archive is chosen to demonstrate the importance of a complimentary analysis that considers both material aspects as well as social and mental ones.

Design/methodology/approach

By taking Jenna Hartel's description of the neo-documentary turn as point of departure, the paper focuses on one case, the portrait of Johannes Abrahamsen Motka taken by Sophus Tromholt in 1883 and discusses different versions of the photograph from glass plate negatives to digitized versions in different contexts and media.

Findings

Many of the same paratextual elements can be found in different versions, also the digitized ones, to help the viewer to establish a historical context, but the images exhibited today are nevertheless no longer the same ones taken by Tromholt at the end of the 19th century. Not only have the material properties changed, but also – and probably even more important in most cases – the social and mental aspects. More re-contextualization is needed for today's audiences to recognize and understand a historical photograph taken in a colonial context. Focusing on document's material elements is not novel within the LIS-field, but the so-called neo-documentary turn was also a reaction on political and technological developments during the 1980s and 1990s. The increased focus on understanding a document in a complimentary way has demonstrated its impact during the last decades and is, at the same time, still work in progress.

Research limitations/implications

As a scholar in the humanities the author can only relate to and therefore analyze what the author can experience and observe on screen level.

Originality/value

In providing a case study, this article illustrates the necessity of employing a complimentary approach when analyzing documents. This also implicates the claim that the neo-documentary turn – or complimentary as it rather should be called – by no means is a conservative one, but a highly necessary one in today's digitized media landscape.

Details

Journal of Documentation, vol. 80 no. 3
Type: Research Article
ISSN: 0022-0418

Keywords

1 – 10 of 40