Search results

1 – 10 of 15
Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2024

Khaled Mostafa and Azza El-Sanabary

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger…

Abstract

Purpose

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger surface area, biodegradability and high reactivity as a starting substrate for cadmium ions and basic dye removal from wastewater effluent. This was done via carboxylation of SNPs with citric acid via esterification reaction using the dry preparation technique, in which a simple, energy-safe and sustainable process concerning a small amount of water, energy and toxic chemicals was used. The obtained adsorbent is designated as cross-linked esterified starch nanoparticles (CESNPs).

Design/methodology/approach

The batch technique was used to determine the CESNPs adsorption capacity, whereas atomic adsorption spectrometry was used to determine the residual cadmium ions concentration in the filtrate before and after adsorption. Different factors affecting adsorption were examined concerning pH, contact time, adsorbent dose and degree of carboxylation. Besides, to validate the esterification reaction and existence of carboxylic groups in the adsorbent, CESNPs were characterized metrologically via analytical tools for carboxyl content estimation and instrumental tools using Fourier-transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) morphological analysis.

Findings

The overall adsorption potential of CESNPs was found to be 136 mg/g when a 0.1 g adsorbent dose having 190.8 meq/100 g sample carboxyl content at pH 5 for 60 min contact time was used. Besides, increasing the degree of carboxylation of the CESNPs expressed as carboxyl content would lead to the higher adsorption capacity of cadmium ions. FTIR spectroscopy analysis elucidates the esterification reaction with the appearance of a new intense peak C=O ester at 1,700 cm−1, whereas SEM observations reveal some atomic/molecules disorder after esterification.

Originality/value

The innovation addressed here is undertaken by studying the consequence of altering the extent of carboxylation reaction expressed as carboxyl contents on the prepared CESNPs via a simple dry technique with a small amount of water, energy and toxic chemicals that were used as a sustainable bio nano polymer for cadmium ions and basic dye removal from wastewater effluent in comparison with other counterparts published in the literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2024

Sabiha Sezgin Bozok

This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these…

Abstract

Purpose

This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these applications on the photocatalytic and mechanical properties of the fabric.

Design/methodology/approach

Different aqueous dispersions which contain anatase, rutile and brookite were prepared at three different concentrations (5%, 10% and 15%). These NPs were embedded in cotton fabrics by using GPTS [(3-glycidyloxypropyl) trimethoxysilane]. Characterization tests were performed by scanning electron microscopy (SEM), Raman and Fourier-transform infrared spectroscopy (FT/IR). Samples were stained with methylene blue (MB) and then exposed to solar light for different periods. Color changes of the samples were examined with a spectrophotometer. Air permeability, abrasion and tear strength tests were applied to all samples.

Findings

According to SEM images, the NPs were successfully attached to the cotton fabrics, and epoxy silane coating surrounded the fiber surfaces. The presence of the coating was also confirmed by Raman spectroscopy and FT/IR. The treatments reduced the stainability of the samples. The most effective applications for ensuring photocatalytic activity in cotton fabrics were suspensions as 10% brookite, 10% anatase and 5% anatase, in descending order. The applied coating slightly reduced the samples’ air permeability, and wear and tear strength.

Originality/value

The importance of this study is to determine the optimal crystal phase and its concentration by using epoxy silane to ensure self-cleaning properties on cotton fabrics. The sample treated with 10% brookite is the most approached its original white color by 99.65% as a result of degradation of MB (after 120 min). On the other hand, using the pure rutile with epoxy silane was not suitable for removing MB from the fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 27 November 2023

Siddig Hussein Hamad

The purpose of this article is to investigate on changes of the microbial load and the chemical and physical properties of date fruits stored for 6 months under two different…

Abstract

Purpose

The purpose of this article is to investigate on changes of the microbial load and the chemical and physical properties of date fruits stored for 6 months under two different temperatures.

Design/methodology/approach

A composite sample of 100 kg date fruits from the Khalas variety, season 2019, was collected from the local market in Al Ahsa Province, Saudi Arabia, packaged in 1 kg lots, stored at room and refrigerator temperatures and the microbial contamination and the chemical and physical properties monitored over a period of six months of storage. Total bacteria, lactic acid bacteria, Enterobacteriaceae, yeasts and molds were counted and representatives of yeast and mold contaminants were identified using morphological, physiological and molecular typing techniques. Changes in the color and texture of the samples were also monitored during storage.

Findings

The yeasts detected were two strains of each of Lachancea thermotolerans and Rhodosporidiobolus fluvialis and one strain of Cystofilobasidium lacus-mascardii. For molds, one strain of each of Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum and Aspergillus caespitosus have been detected. No significant growth of these microorganisms was observed, but enough load persisted during storage that makes the samples not meeting the microbiological standards. There were significant changes in the color and texture of the fruits during storage.

Originality/value

These findings add important information that can help producers and processors to improve quality and promote marketing of date fruits, especially to international markets.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 22 March 2024

Abhishek Kumar and Manpreet Manshahia

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the…

Abstract

Purpose

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the current state of academic research in this domain and identify and analyze major sustainable trends in the field.

Design/methodology/approach

This study conducts a thorough examination of research publications sourced from the Scopus database spanning the years 2013–2023 by employing a systematic approach. The research utilizes both descriptive analysis and content analysis to identify trends, notable journals and leading countries in sustainable waterproof breathable fabric development.

Findings

The study reveals a notable increase in studies focusing on sustainable approaches in the development of waterproof breathable fabrics for garments. Descriptive analysis highlights the most prominent journal and leading country in terms of research volume. Content analysis identifies four key trends: minimizing chemical usage, developing easily degradable materials, creating fabrics promoting health and well-being and initiatives to reduce energy consumption.

Research limitations/implications

The main limitation of this research lies in its exclusive reliance on the Scopus database.

Practical implications

The insights derived from this study offer practical guidance for prospective researchers interested in investigating sustainable approaches to developing waterproof breathable fabric for garments. The identified trends provide a foundation for aligning research endeavors with contemporary global perspectives, facilitating the integration of sustainable methodologies into the garment industry.

Originality/value

This systematic literature review contributes original insights by synthesizing current research trends and outlining evolving sustainable practices in the development of waterproof breathable fabrics. The identification of key focus areas adds a novel perspective to existing knowledge.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 6 months (15)

Content type

Earlycite article (15)
1 – 10 of 15