Search results

1 – 10 of 882
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

148

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 April 2024

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric…

Abstract

Purpose

The purpose of this study is to introduce a new type of sensor which uses microwave metamaterials and direct-coupled split-ring resonators (DC-SRRs) to measure the dielectric properties of solid materials in real time. The sensor uses a transmission line with a bridge-type structure to measure the differential frequency, which can be used to calculate the dielectric constant of the material being tested. The study aims to establish an empirical relationship between the dielectric properties of the material and the frequency measurements obtained from the sensor.

Design/methodology/approach

In the proposed design, the opposite arm of the bridge transmission line is loaded by DC-SRRs, and the distance between DC-SRRs is optimized to minimize the mutual coupling between them. The DC-SRRs are loaded with the material under test (MUT) to perform differential permittivity sensing. When identical MUT is placed on both resonators, a single transmission zero (notch) is obtained, but non-identical MUTs exhibit two split notches. For the design of differential sensors and comparators based on symmetry disruption, frequency splitting is highly useful.

Findings

The proposed structure is demonstrated using electromagnetic simulation, and a prototype of the proposed sensor is fabricated and experimentally validated to prove the differential sensing principle. Here, the sensor is analyzed for sensitivity by using different MUTs with relative permittivity ranges from 1.006 to 10 and with a fixed dimension of 9 mm × 10 mm ×1.2 mm. It shows a very good average frequency deviation per unit change in permittivity of the MUTs, which is around 743 MHz, and it also exhibits a very high average relative sensitivity and quality factor of around 11.5% and 323, respectively.

Originality/value

The proposed sensor can be used for differential characterization of permittivity and also as a comparator to test the purity of solid dielectric samples. This sensor most importantly strengthens robustness to environmental conditions that cause cross-sensitivity or miscalibration. The accuracy of the measurement is enhanced as compared to conventional single- and double-notch metamaterial-based sensors.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 July 2022

Priyanka Sakare, Saroj Kumar Giri, Debabandya Mohapatra and Manoj Kr Tripathi

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in…

Abstract

Purpose

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in intelligent food packaging.

Design/methodology/approach

UV-Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero- and first-order reaction kinetics. An indicator was prepared by incorporating lac dye in agarose membrane to validate the result of study for monitoring quality of raw milk.

Findings

Dye was orange-red in acidic medium (pH: 2 to 5) and exhibited absorbance peak at 488 nm. It turned purple in alkaline medium (pH: 7 to10) and exhibited absorbance peak at 528 nm. The change in absorbance ratio with pH followed zero-order model. Acid dissociation constant (pKa) of dye was found to be 6.3. Color change of dye in response to ammonia and tyramine followed zero-order reaction kinetics, whereas for lactic acid, the first-order model was found best. In the validation part, the color of the indicator label changed from purple to orange-red when the milk gets spoiled.

Originality/value

The study opens a new application area for lac dye. The results suggest that lac dye has potential to be used as an indicator in intelligent food packaging for detection of spoilage in seafood, meat, poultry and milk.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 January 2024

Niloofar Solhjoo, Maja Krtalić and Anne Goulding

While exploring the information experience within multispecies families, the subjective nature of humans and non-human entities, living beings and non-living objects becomes…

Abstract

Purpose

While exploring the information experience within multispecies families, the subjective nature of humans and non-human entities, living beings and non-living objects becomes evident. This paper aims to reveal the underlying significance of information within socio-physical living environments shared among humans, cats and dogs as companions.

Design/methodology/approach

Gaining inspiration from the information experience approach and posthumanism, this is a phenomenological paper. Empirical material related to lived experiences of participating families were gathered through multispecies ethnography methods, followed by phenomenological reflections. The paper has been written based on excerpt-commentary-units and the inclusion of videos and images as an approach to convey the richness of the lived experiences and multiple perspectives.

Findings

Findings are organised into three main sections, each capturing lived experiences of information and its utilization from various frames. The paper shows how living beings, both human and animal, use their physical, sensual and moving bodies to acquire and convey information to and from each other. Moving beyond the living beings, the study discusses how non-living objects in the physical environment of a multispecies family also shape information. Material objects, spatial locations and even plants became sources of information for the family members. Lastly, the paper delves into the social environment of the family, where all members, human and animal, are actively shaped by information within their social interactions and companionship.

Originality/value

Considering information distributed across species and material objects in a shared, more-than-human environment, the article suggests implications for an information experience approach. It emphasizes how information shapes the in-between humans, animals and their environment, highlighting their reliance on each other for understanding and living a good shared life. There is a need for future research to explore the information experience within the internal subjective minds of members of multispecies families, bridging the gap in the understanding of these external information and their internal information processes.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Article
Publication date: 19 April 2024

Yingying Yu, Wencheng Su, Zhangping Lu, Guifeng Liu and Wenjing Ni

Spatial olfactory design in the library appears to be a practical approach to enhance the coordination between architectural spaces and user behaviors, shape immersive activity…

Abstract

Purpose

Spatial olfactory design in the library appears to be a practical approach to enhance the coordination between architectural spaces and user behaviors, shape immersive activity experiences and shape immersive activity experiences. Therefore, this study aims to explore the association between the olfactory elements of library space and users’ olfactory perception, providing a foundation for the practical design of olfactory space in libraries.

Design/methodology/approach

Using the olfactory perception semantic differential experiment method, this study collected feedback on the emotional experience of olfactory stimuli from 56 participants in an academic library. From the perspective of environmental psychology, the dimensions of pleasure, control and arousal of users’ olfactory perception in the academic library environment were semantically and emotionally described. In addition, the impact of fatigue state on users’ olfactory perception was analyzed through statistical methods to explore the impact path of individual physical differences on olfactory perception.

Findings

It was found that users’ olfactory perception in the academic library environment is likely semantically described from the dimensions of pleasure, arousal and control. These dimensions mutually influence users’ satisfaction with olfactory elements. Moreover, there is a close correlation between pleasure and satisfaction. In addition, fatigue states may impact users’ olfactory perception. Furthermore, users in a high-fatigue state may be more sensitive to the arousal of olfactory perception.

Originality/value

This article is an empirical exploration of users’ perception of the environmental odors in libraries. The experimental results of this paper may have practical implications for the construction of olfactory space in academic libraries.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 16 April 2024

Roberto Salvatore Di Fede, Marivel Gonzalez-Hernandez, Eva Parga-Dans, Pablo Alonso Gonzalez, Purificación Fernández-Zurbano, María Cristina Peña del Olmo and María-Pilar Sáenz-Navajas

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Abstract

Purpose

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Design/methodology/approach

Commercial samples of Canary ciders were compared to ciders from the Basque Country and Asturias. In total, 18 samples were studied, six for each region. The analysis comprised their sensory profiling and chemical characterisation of their polyphenolic profile, volatile composition, conventional chemical parameters and CIELAB colour coordinates. In parallel, the sensory profile of the samples from the Canary Islands was first compared with their Basque and Asturian counterparts by labelled sorting task. Then, their specific aroma profile was characterised by flash profile. Further quantification of sensory-active compounds was performed by GC–MS and GC-FID to identify the volatile compounds involved in their aroma profile.

Findings

Results show that Canary ciders present a specific chemical profile characterised by higher levels of ethanol, and hydroxycinnamic acids, mainly t-ferulic, t-coumaric and neochologenic acids, and lower levels of volatile and total acidity than their Asturian and Basque counterparts. They also present a specific aroma profile characterised by fruity aroma, mainly fruit in syrup and confectionary, and sweet flavours related to their highest levels of vinylphenols formed by transformation of hydroxycinnamic acids.

Originality/value

An integrated strategy to explore the typicity of the currently existing Canary ciders in the market was developed. The results are important in that they will help other regions to identify specific typical chemo-sensory profiles and to promote the creation of certifications supporting regional typicity.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 27 December 2022

Mohammad Imtiaz Hossain, Boon Heng Teh, Mosab I. Tabash, Mohammad Nurul Alam and Tze San Ong

Manufacturing small and medium-sized enterprises (SMEs) are heading towards smart manufacturing despite growing challenges caused by globalisation and rapid technological…

Abstract

Purpose

Manufacturing small and medium-sized enterprises (SMEs) are heading towards smart manufacturing despite growing challenges caused by globalisation and rapid technological advancement. These SMEs, particularly textile SMEs of Bangladesh, also face challenges in implementing sustainability and organisational ambidexterity (OA) due to resource constraints and limitations of conventional leadership styles. Adopting paradoxical leadership (PL) and entrepreneurial bricolage (EB) is important to overcome the challenges. However, these dynamics are less explored in academia, especially in the Bangladeshi textile SMEs context. Hence, the purpose of this study is to investigate the influence of the adoption of smart technologies (ASTs), PL and OA, EB on sustainable performance (SP) of textile SMEs in Bangladesh.

Design/methodology/approach

A cross-sectional and primary quantitative survey was conducted. Data from 361 textile SMEs were collected using a structured self-administrated questionnaire and analysed by partial least square structural equation modelling (PLS-SEM).

Findings

The statistical outcome confirms that ASTs and PL significantly influence SP and OA. OA plays a significant mediating role for PL and is insignificant for ASTs, and EB significantly moderates among ASTs, PL and SP.

Research limitations/implications

As this study is cross-sectional and focussed on a single city (Dhaka, Bangladesh), conducting longitudinal studies and considering other parts of the country can provide exciting findings.

Practical implications

This research provides valuable insights for policymakers, management and textile SMEs in developing and developed countries. By adopting unique and innovative OA, PL and EB approaches, manufacturing SMEs, especially textile companies, can be more sustainable.

Originality/value

This study has a novel, pioneering contribution, as it empirically validates the role of multiple constructs such as AST, PL, OA and EB towards SP in the context of textile SMEs in a developing country like Bangladesh.

Details

Journal of Enterprising Communities: People and Places in the Global Economy, vol. 18 no. 2
Type: Research Article
ISSN: 1750-6204

Keywords

1 – 10 of 882