Search results

1 – 10 of 157
Article
Publication date: 6 December 2022

Khaled Mostafa, Heba Ameen and Ahmed Medhat

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent…

Abstract

Purpose

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent process. This was done for rendering cotton dye-able with Acid Blue 284, which in fact does not have any direct affinity to fix on it.

Design/methodology/approach

Dyeing characteristics of the samples such as color strength (K/S), fastness properties to light, rubbing and perspiration and durability, as well as tensile strength, elongation at break, whiteness, weight loss and wettability in addition to zeta potential of the dyed samples, were determined and compared with untreated fabric. Confirmation and characterization of the plasma-treated samples via chemical modifications and zeta potential was also studied using Fourier transform infrared spectroscopy (FTIR) and Malvern Zetasizer instrumental analysis.

Findings

The obtained results of the plasma-treated fabric reflect the following findings: FTIR results indicate the formation of nitrogen-containing groups on cotton fabrics; notable enhancement in the fabric wettability, zeta potential to more positive values and improvement in the dyeability and overall fastness properties of treated cotton fabrics in comparison with untreated fabric; the tensile strength, elongation at break, whiteness and weight % of the plasma treated fabrics are lower than that untreated one; and the durability of the plasma treated fabric decreased with increasing the number of washing cycles.

Originality/value

The novelty addressed here is rendering cotton fabrics dye-able with acid dye via the creation of new cationic nitrogen-containing groups on their surface via nitrogen plasma treatment as an eco-friendly and efficient tool with a physical/zero-effluent process.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2024

Dawu Shu, Shaolei Cao, Yan Zhang, Wanxin Li, Bo Han, Fangfang An and Ruining Liu

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Abstract

Purpose

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Design/methodology/approach

The effects of temperature, the concentration of inorganic salts and Na2CO3 and the initial pH value on the degradation of RR24 were studied. Furthermore, the relationship between free radicals and RR24 degradation effect was investigated. Microscopic routes and mechanisms of dye degradation were further confirmed by testing the degradation karyoplasmic ratio of the product. The feasibility of the one-bath cyclic dyeing in the recycled dyeing wastewater was confirmed through the properties of dye utilization and color parameters.

Findings

The appropriate conditions were 0.3 g/L of sodium persulphate and treatment at 95°C for 30 min, which resulted in a decolorization rate of 98.4% for the dyeing wastewater. Acidic conditions are conducive to rapid degradation of dyes, while ·OH or SO4· have a destructive effect on dyes under alkaline conditions. In the early stage of degradation, ·OH played a major role in the degradation of dyes. For sustainable cyclic dyeing of RR24, inorganic salts were reused in this dyeing process and dye uptake increased with the times of cycles. After the fixation, some Na2CO3 may be converted to other salts, thereby increasing the dye uptake in subsequent cyclic staining. However, it has little impact on the dye exhaustion rate and color parameters of dyed fabrics.

Originality/value

The recommended technology not only reduces the quantity of dyeing wastewater but also enables the recycling of inorganic salts and water, which meets the requirements of sustainable development and clean production.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 May 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of…

Abstract

Purpose

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of sustainable antibacterial and nontoxic surgical gowns.

Design/methodology/approach

The conventional untreated surgical gowns are prone to bacterial attack making them unprotective and infection carriers. Thereby, nanosilver finishing of the surgical-grade dyed denim fabric was achieved via citrate cross-linking under the pad-dry-cure method. The hence treated denim fabrics were characterized for surface chemical, crystalline, textile, color and antibacterial attributes using both conventional and advanced analytical approaches.

Findings

The results expressed that the prepared denim specimens contained surface roughness at the nanoscale besides some alterations in their textile and color parameters. Both textile and comfort properties of the finished fabric remained in the acceptable range with effective antibacterial activity.

Practical implications

The silver nano-finished dyed denim expressed broad-spectrum antibacterial activity and qualified as a potential substrate in the fabrication of surgical gowns. Such sustainable application of nanosilver finishing could be perused for industrial implications.

Originality/value

This study presents citric acid as a crosslinking agent to impregnate the commercially dyed denim fabric for potential application in the fabrication of surgical gowns. The application of nanosilver on prior citrated dyed-grown fabrics could be a novel approach. This study used approximately all the reagents and auxiliaries as bio-based to ensure the nontoxicity and sustainability of the resultant fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton…

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 February 2024

Umesh Mahajan and S.T. Mhaske

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl…

Abstract

Purpose

This study aims to focus on how reactive diluents with mono- and di-functionalities affect the properties of resin formulation developed from bioderived precursors. A hydroxyethyl methacrylate (HEMA) terminated urethane acrylate oligomer was synthesized and characterized to study its application in stereolithography 3D printing with different ratios of isobornyl acrylate and hexanediol diacrylate.

Design/methodology/approach

Polyester polyol was synthesized from suberic acid and butanediol. Additionally, isophorone diisocyanate, polyester polyol and HEMA were used to create urethane acrylate oligomer. Fourier transform infrared spectroscopy and 1H NMR were used to characterize the polyester polyol and oligomer. Various formulations were created by combining oligomer with reactive diluents in concentrations ranging from 0% to 30% by weight and curing with ultraviolet (UV) radiation. The cured coatings and 3D printed specimens were then evaluated for their properties.

Findings

The findings revealed an improvement in thermal stability, contact angle value, tensile strength and surface properties of the product which indicated its suitability for use as a 3D printing material.

Originality/value

This study discusses how oligomers that have been cured by UV radiation with mono- and difunctional reactive diluents give excellent coating characteristics and demonstrate suitability and stability for 3D printing applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 April 2024

Ann Wairimu Mburu, David Githinji Njuguna, Fredrick Musieba, Charles Nzila, Virginia Kimani and Alice Wangai

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Abstract

Purpose

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Design/methodology/approach

The Eps were produced by bacteria isolated from cotton gin trash soils collected from different cotton-growing regions in Kenya for comparison purposes. A broth medium reconstituted using molasses was assessed for its capacity to produce the Eps. RB5 textile dye wastewater was optimized for dye removal under different temperatures, times and molasses concentrations. Dye removal was studied by Lovibond-Day Light Comparator, UV–Vis spectrophotometer and FTIR.

Findings

It was found that cotton gin trash soils contained Eps-producing bacteria. Three of the Eps studied were found to have the capacity to remove at least 80% of the dye from the wastewater.

Research limitations/implications

This research did not assess the efficacy of the RB5 dye removal from the wastewater by mixtures of the Eps.

Practical implications

Bioremediation of textile dye wastewater with Eps produced by bacteria cultured from cotton gin trash soil is significant because it will offer an effective and cleaner alternative to the chemical coagulants.

Social implications

Alternative treatment of textile wastewater with the Eps would result in safer water being released into the water bodies as opposed to the chemically treated wastewater that contains remnant chemicals.

Originality/value

Research on the use of Eps produced by bacteria isolated from cotton gin trash soils for removal of RB5 dye from textile wastewater has not been done before.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Shimaa S.M. Elhadad, Hany Kafafy, Hamada Mashaly and Ahmed Ali El-Sayed

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Abstract

Purpose

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Design/methodology/approach

The newly prepared lecithin liposome was used to encapsulate dyes for the purpose of increasing dyeing affinity. Different ratios of commercially available lecithin liposomes (1%, 3%, 5% and 7%) were used simultaneously in the dyeing of cotton and wool fabrics. The treated fabrics (cotton and wool fabrics) were confirmed using different analytical procedures such as scanning electron microscope (SEM), Fourier-transition infrared spectroscopy, ultraviolet protection factor, colour strength (K|S) measurements and fastness measurements.

Findings

The results show that increasing liposome ratios in dyeing baths leads to increased dyeing affinity for cotton and wool fabrics compared with conventional dyeing without using liposomes. In addition to that, the colour strength values, infrared spectra, SEM and fastness properties of non-liposome-dyed fabrics and liposome-dyed fabrics were investigated.

Originality/value

The research paper provides broad spectrum of green encapsulation fabrics using liposome technology to perform the dye stability, dye strength and fastness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 157