Search results

1 – 7 of 7
Article
Publication date: 21 July 2022

Rehab El-Gamal, Khaled El-Nagar, Nagwa A. Tharwat and Gomaa Abdel-Maksoud

This study aims to use whiteness (WI) and yellowness indices (YI) that were calculated from the International Commission on Illumination (CIE) color parameter to evaluate the…

Abstract

Purpose

This study aims to use whiteness (WI) and yellowness indices (YI) that were calculated from the International Commission on Illumination (CIE) color parameter to evaluate the efficiency of some triazole fungicides [propiconazole (C15H17Cl2N3O2) and tebuconazole (C16H22ClN3O)] to protect wooden artifacts from fungal deterioration.

Design/methodology/approach

Archeological wooden samples were collected from some historical Islamic buildings in Cairo, Egypt. Three species of fungi were identified in previous work. Propiconazole and tebuconazole with different concentrations treated the infected wooden samples aged for different periods. WI and YI of studied samples were measured using UV spectrophotometer. Calibration and uncertainty estimation accompanied by color measurement were studied.

Findings

Studying the uncertainty sources of diffuse reflection of the standard white tiles revealed that the uncertainty of calibration for both the spectrophotometer and white tiles had the highest contribution. The treated samples with tebuconazole and propiconazole fungicides gave good resistance against fungal deterioration at 0.50% for WI and YI.

Originality/value

This study presents the importance of colorimetry in the conservation field because they are considered one of the most important criteria to evaluate conservation materials. From color measurements and their uncertainties, it became clear that triazole fungicides have good efficiency in the protection of wooden artifacts from fungal deterioration. The value of this study is that propiconazole and tebuconazole fungicides at 0.50% can be applied to archaeological wood that is endangered to improper conditions, especially in the case of high levels of relative humidity.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 November 2023

Khishn Kumar Kandiah, Vengadaesvaran Balakrishnan, Amirul Syafiq, Nasrudin Abd Rahim, Adarsh Kumar Pandey, Yee Seng Tan, Sanjay J Dhoble, Ramesh Kasi and Ramesh Subramaniam

There is a strong inducement to develop new inorganic materials to substitute the current industrial pigments, which are known for their poor ultraviolet absorbent and low…

Abstract

Purpose

There is a strong inducement to develop new inorganic materials to substitute the current industrial pigments, which are known for their poor ultraviolet absorbent and low photoluminescence (PL) properties. The purpose of this paper is to invent a better rare-earth-based pigment material as a spectral modifier with good luminescence properties to enhance the spectral response for photovoltaic panel application.

Design/methodology/approach

Different phosphor samples made of nano-calcium carbonate (CaCO3) with varied wt.% of the dopant Dysprosium doped calcium borophosphate (CBP/Dy) as (W0 – 0%, W1 – 3,85%, W2 – 7.41%, W3 –10.71% and W4 –13.79%) were prepared via the solid-state diffusion method at 600 °C for 6 h using a muffle furnace. The structural, morphological and luminescence properties of the CaCO3:CBP/Dy powder samples were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and PL test.

Findings

The XRD, SEM and FTIR results verified the crystalline formation, morphological behaviour and vibration bonds of synthesized CBP/Dy-doped CaCO3 powder samples. XRD pattern revealed that the synthesized powder samples exhibit crystalline structured materials, and SEM results showed irregular shape and porous-like structured morphologies. FTIR spectrum shows prominent bands at 712, 874 and 1,404 cm−1, corresponding to asymmetric stretching vibrations of CO32− groups and out-of-plane bending. PL characterization of CBP/Dy-doped CaCO3 (sample W) shows emission at 427 nm (λmax) under the excitation of 358 nm. The intensity of PL emission spectra drops due to the concentration quenching effect, while the maximum PL intensity is observed in the W3 phosphor powder system.

Research limitations/implications

This phosphor powder is expected to find out the potential application such as a spectral modifier which is applied to match the energy of photons with solar cell bandgap to improve spectral absorption and lead to better efficiency.

Originality/value

The introduction of a nano-CaCO3:CBP/Dy hybrid powder system with good luminescence properties to be used as spectral modifiers for solar cell application has been synthesized in the lab, which is a novel attempt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 February 2024

Nagla Elshemy, Mona Ali and Reem Nofal

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard…

30

Abstract

Purpose

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard technique of extraction.

Design/methodology/approach

The effect of the heating source, extracted time, temperature and pH of extracted solution on the extraction was studied. The obtained gum is subsequently used for silk screen printing on cotton, linen and viscous fabrics. Rheological properties and viscosity of the printing paste were scrutinized in the current study to get a better insight into this important polysaccharide. The output of this effort aimed to specify the parameters of the processes for printing textiles to serve in women’s fashion clothes by applying innovated handmade combinations of Islamic art motives using a quick and affordable method. Seven designs are executed, and inspiring from them, seven fashion designs of ladies’ clothes were designed virtually by Clo 3D software.

Findings

The result recorded that the new gum has excellent printing properties. In addition, they have better rheological properties, viscosity, chromatic strength and fastness qualities, all of which could help them in commercial production.

Research limitations/implications

Flaxseed and three different fabric types (Cotton, Linen and Viscous) were used.

Practical implications

Synthesis of a new biodegradable thickener from a natural resource, namely, flaxseed, by applying new technology to save time, water and energy.

Originality/value

Synthesis of eco-friendly biodegradable thickener and used in textile printing alternative to the synthetic thickener.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 November 2023

Dong Chen, Rui Zhang and JiaCheng Jiang

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of…

Abstract

Purpose

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of BiOBr/PVDF composite membranes made by adding different precursor ratios during the casting process.

Design/methodology/approach

In this paper, sodium bromide and Bi(NO3)3 were used as precursors for the preparation of BiOBr photocatalysts, and PVDF membranes were modified by using the phase conversion method in conjunction with the in situ deposition method to produce BiOBr/PVDF hydrophilic composite membranes with both membrane separation and photocatalytic capabilities.

Findings

The characterization results confirmed that the composites were successfully and homogeneously co-mingled in the PVDF membranes. The related performance of the composite membrane was tested, and it was found that the composite membrane with the optimal precursor incorporation ratio had good photocatalytic efficiency and antipollution ability; the removal efficiencies of methyl orange, rhodamine B and methylene blue were 80.43%, 85.02% and 86.94%, respectively, in 2.5 h. The photocatalytic efficiency of composite membranes with different precursor ratios increased and then decreased with the increase of the precursor addition ratio.

Originality/value

The composite membrane is prepared by phase conversion method with in situ deposition method, and the BiOBr material has unique advantages for the degradation of organic dyes. The comprehensive experimental data can be known that the composite membrane prepared in this paper has high degradation efficiency and good durability for organic dyes.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 September 2022

Amirul Syafiq, Nasrudin Abd. Rahim, Vengadaesvaran Balakrishnan and A.K. Pandey

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium…

Abstract

Purpose

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium carbonate (nano-CaCO3) and titanium dioxide (TiO2).

Design/methodology/approach

The synthesis method of PDMS/nano-CaCO3-TiO2 is based on sol-gel process. The crosslinking between PDMS and nanoparticles is driven by the covalent bond at temperature of 50°C. The 3-Aminopropyltriethoxysilane is used as binder for nanoparticles attachment in polymer matrix. Two fabrication methods are used, which are dip- and spray-coating methods.

Findings

The prepared coated glass fulfilled the requirement of standard self-cleaning and fog-resistance performance. For the self-cleaning test BS EN 1096-5:2016, the coated glasses exhibited the dust haze value around 20%–25% at tilt angle of 10°. For the antifog test, the coated glasses showed the fog haze value were below 2% and the gloss value were above 85%. The obtained results completely achieved the standard antifog value ASTM F659-06 protocol.

Research limitations/implications

Findings will provide an infrastructure support for the building glass to enhance building’s energy efficiency, cleaning performance and friendly environment.

Practical implications

This study proposed the simple synthesis method using hydrophobic polymer and nano-CaCO3 and nano-TiO2, which can achieve optimum self-cleaning property at low tilt angle and fog-resistance performance for building glass.

Social implications

The research findings have high potential for building company, cleaning building company and government sector. The proposed project capable to reduces the energy consumption about 20% per annum due to labor cost, time-consuming and safety during manual cleaning.

Originality/value

The novel method to develop self-cleaning coating with fog-resistance using simple synthesis process and fabrication method for building glass application.

Article
Publication date: 13 May 2024

Rania Abdel Gwad Eloriby, Wael Sabry Mohamed and Hamdy Mohamed Mohamed

The purpose of this study is to evaluate the effectiveness of nanocontainer solutions in removing deteriorated and aged polymers commonly used in coating and consolidating…

Abstract

Purpose

The purpose of this study is to evaluate the effectiveness of nanocontainer solutions in removing deteriorated and aged polymers commonly used in coating and consolidating archaeological glass.

Design/methodology/approach

This study focused on characterizing glass surfaces coated with two commonly used polymeric materials in archaeological glass preservation. Furthermore, the study evaluates the elimination of these coatings from the surfaces by using innovative aqueous systems composed of micellar solutions (MS) and oil-in-water (O/W) Texapon-P microemulsions (TEX). Glass samples coated with selected polymers were subjected to thermal and photochemical aging to simulate natural degradation conditions. This study aimed to evaluate the effectiveness of nanocontainer aqueous systems compared to acetone (Ac), a conventional solvent commonly used for removal procedures. The characterization procedures involved transmission electron microscopy, USB digital microscopy, scanning electron microscopy, color alteration and gravimetric measurement.

Findings

The findings indicate that the effectiveness of novel techniques using aqueous nanocontainer systems is quite promising when considering a “green approach” to preserving cultural heritage. Microscopic examination demonstrated the efficacy of MS in effectively removing acrylic and vinyl polymers from the glass surface. Furthermore, TEX proved effective in removing polyvinyl acetate (PVA) over Paraloid B72 (B-72). In addition, the measurement of color alteration values revealed a decrease after using MS compared to the standard sample before applying the polymers, with values of ΔE = 1.48 and 1.82 for B-72 polymer and PVA, respectively.

Originality/value

This research provides nanocontainer solutions for removing aged polymers from the glass surface. This makes the current study a promising step for treating archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 7 of 7