Search results

1 – 10 of 74
Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

45

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 May 2024

Gang Wang, Mian Wang, ZiHan Wang, GuangTao Xu, MingHao Zhao and Lingxiao Li

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Abstract

Purpose

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Design/methodology/approach

The surface-modified layer of 18CrNiMo7-6 alloy steel was delaminated to study its hydrogen embrittlement characteristics via hydrogen permeation, electrochemical hydrogen charging and scratch experiments.

Findings

The results showed that the diffusion coefficients of hydrogen in the surface and matrix layers are 3.28 × 10−7 and 16.67 × 10−7 cm2/s, respectively. The diffusible-hydrogen concentration of the material increases with increasing hydrogen-charging current density. For a given hydrogen-charging current density, the diffusible-hydrogen concentration gradually decreases with increasing depth in the surface-modified layer. Fracture toughness decreases with increasing diffusible-hydrogen concentration, so the susceptibility to hydrogen embrittlement decreases with increasing depth in the surface-modified layer.

Originality/value

The reliability of the scratch method in evaluating the fracture toughness of the surface-modified layer material is verified. An empirical formula is given for fracture toughness as a function of diffused-hydrogen concentration.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Case study
Publication date: 21 September 2023

Vishwanatha S.R. and Durga Prasad M.

The case was developed from secondary sources and interviews with a security analyst. The secondary sources include company annual reports, news reports, analyst reports, industry…

Abstract

Research methodology

The case was developed from secondary sources and interviews with a security analyst. The secondary sources include company annual reports, news reports, analyst reports, industry reports, company websites, stock exchange websites and databases such as Bloomberg and CMIE Prowess.

Case overview/synopsis

Increasing competition in product and capital markets has put tremendous pressure on managers to become more cost competitive. To address their firms' uncompetitive cost structures, managers may have to consider dramatic restructuring of their businesses. During 2014–2017, Tata Steel Ltd (TSL) UK considered a series of divestitures and a merger plan to nurse the company back to health. The case considers the economics of the restructuring plan. The case is designed to help students analyze a corporate downsizing program undertaken by a large Indian company in the UK and to highlight the dynamic role of the CFO and governance issues in family firms. It introduces students to issues surrounding a typical restructuring and provides students a platform to practice the estimation of value creation in a restructuring exercise. While some cases on corporate restructuring in the context of developed economies are available, there are very few cases written in an emerging market context. This case bridges that gap. TSL presents a unique opportunity to study corporate restructuring necessitated by a failed cross-border acquisition. It illustrates the potential for value loss in large, cross-border acquisitions. It shows how managerial hubris can prompt family firm owners to overbid in acquisitions and create legacy hot spots. In addition, the case can be used to discuss the causes of governance failures such as weak institutional monitoring and poor legal enforcement in emerging markets that could potentially harm minority shareholders.

Complexity academic level

The case was developed from secondary sources and interviews with a security analyst. The secondary sources include company annual reports, news reports, analyst reports, industry reports, company websites, stock exchange websites and databases such as Bloomberg and CMIE Prowess.

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 May 2024

Zhenshun Li, Jiaqi Li, Ben An and Rui Li

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Abstract

Purpose

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Design/methodology/approach

Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results.

Findings

The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters.

Originality/value

This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 74