Search results

1 – 10 of 182
Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 May 2019

Polychronis Spyridon Dellis

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect…

Abstract

Purpose

Cavitation in piston-ring lubrication is studied as part of the performance of piston-ring assemblies. Cavitation degrades performance in engineering applications and its effect is that it alters the oil film pressure, generated at the converging-diverging wedge of the interface. Studies tried to shed light to the phenomenon of cavitation and compare it with cavities that have been identified in bearings. The paper aims to discuss this issue.

Design/methodology/approach

Lubricant formulations were used for parametric study of oil film thickness (OFT) and friction providing the OFT throughout the stroke and LIF for OFT point measurements. Lubricant formulation affects cavitation appearance and behaviour when fully developed.

Findings

Cavitation affects the ring load carrying capacity. Different forms of cavitation were identified and their shape and size (length and width) is dictated from reciprocating speed and viscosity of the lubricant. A clear picture is given from both techniques and friction results give quantifiable data in terms of the effect in wear and cavitation, depending on the lubricant properties.

Research limitations/implications

Engine results are limited due to manufacturing difficulties of visualisation windows and oil starvation. Therefore, full stroke length sized windows were not an option and motoring tests were implemented due to materials limitations (adhesive and quartz windows). Lubricant manufacturer has to give data regarding the chemistry of the lubricants.

Originality/value

The contribution of cavitation in piston-ring lubrication OFT, friction measurements and lubricant parameters that try to shed light to the different forms of cavitation. A link between viscosity, cavitation, shear thinning properties, OFT and friction is given.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 December 2021

Xin Wang and Ting-Qiang Xie

Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic…

Abstract

Purpose

Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic concrete under high-speed flow.

Design/methodology/approach

A high-speed and high-pressure venturi cavitation erosion generator was used to simulate the strong cavitation. The characteristics of hydrodynamic loads of cavitation bubble collapse zone, the failure characteristics and the erosion development process of concrete were investigated. The main influencing factors of cavitation erosion were discussed.

Findings

The collapse of the cavitation bubble group produced a high frequency, continuous and unsteady pulse load on the wall of concrete, which was more likely to cause fatigue failure of concrete materials. The cavitation action position and the main frequency of impact load were greatly affected by the downstream pressure. A power exponential relationship between cavitation load, cavitation erosion and flow speed was observed. With the increase of concrete strength, the degree of damage of cavitation erosion was approximately linearly reduced.

Originality/value

After cavitation erosion, a skeleton structure was formed by the accumulation of granular particles, and the relatively independent bulk structure of the surface differed from the flake structure formed after abrasion.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 November 2022

Quan Yuan, Ning Li, Yujie Li and Junhua Hao

The purpose of this paper is to study the corrosion behavior of 316L stainless steel under cavitation condition in simulated seawater.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of 316L stainless steel under cavitation condition in simulated seawater.

Design/methodology/approach

Electrochemical impedance spectroscopy and electrochemical noise analyses are used to characterize the electrochemical process during the cavitation erosion process.

Findings

Because of good corrosion resistance of this material, mechanical damage is the main cause of cavitation erosion. The alloy surface is in active dissolution state during the cavitation erosion process, and the corrosion rate is accelerated as time prolongs which is verified by electrochemical results.

Originality/value

Electrochemical noise is an effective way to study the corrosion under cavitation erosion process.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 August 2019

Jian Zhang

This paper aims to resolve the cavitation problem encountered in cone throttle valves concerning fluid flow performance and pitting from cavitation luminescence, the author…

Abstract

Purpose

This paper aims to resolve the cavitation problem encountered in cone throttle valves concerning fluid flow performance and pitting from cavitation luminescence, the author studied the flow field within a cone throttle valve set with various valve openings, inlet pressures and outlet back pressures.

Design/methodology/approach

The flow and cavitation distribution in the valve under different pressure conditions were obtained in simulations. To confirm these results experimentally, a hydraulic cavitation platform was constructed. The valve was made of polymethyl methacrylate material with high transparency to observe the cavitation directly, as well as cavitation luminescence. The flow characteristics of this valve were measured under various working conditions.

Findings

With increasing cavitation strength, a reduction in cavitation on the throttle capacity was more evident. Increasing the back pressure and reducing the working pressure of the valve appropriately improves the flow capacity of the valve, which subsequently improves the performance of the valve. The cavitation luminescence is also linearly related to cavitation intensity. That is, the stronger the flow capacity of the valve, the less likely the luminescence is produced. Moreover, a stronger luminescence intensity worsens the flow performance of the valve.

Research limitations/implications

Owing to the limitation of experimental means and lack of research on bubble shape, the subsequent research will complement this aspect.

Practical implications

With a view to providing theoretical and experimental support, cavitation luminescence is also studied to gain a deeper understanding of the cavitation mechanism in hydraulic valves.

Originality/value

The innovation of this paper is to study the cavitation luminescence in the hydraulic system.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Bahaa Saleh, A. Abouel-Kasem and Shemy Ahmed

This paper aimed to analyze removed particles from stationary specimen-aluminum (Al-99.92) produced by vibratory cavitation erosion tests in distilled water and glycerol-water…

Abstract

Purpose

This paper aimed to analyze removed particles from stationary specimen-aluminum (Al-99.92) produced by vibratory cavitation erosion tests in distilled water and glycerol-water mixtures.

Design/methodology/approach

The particle morphology which include particle surface topography, size distribution, particle size parameters and particle shape parameters were examined for distilled water and glycerol-water mixtures having different viscosities.

Findings

The results showed that the variation of size parameters with viscosity was very similar to the variation of weight loss with viscosity. Both the size parameters and weight losses show a monotonic decrease in going from distilled water to glycerol-water mixtures having viscosity about 10.1 cSt, beyond which the change is very small. On the other hand, the shape parameters were much less sensitive to distinguish between the particles produced in water and glycerol-water mixtures. The mechanism of cavitation erosion is investigated in detail through observations of the removed particles. The particle surfaces topography demonstrated that the mechanism in water and glycerol-water mixtures was fatigue failure.

Originality/value

Cavitation often occurs in almost all machines that handle liquids, especially at high speeds, leading to irreparable damage of the components of these machines. Elucidation of such complex phenomenon demands full characterization of the erosion mechanism and controlling parameters inherent to it, so that cavitation erosion can be prevented or at least be reduced through adequate information and collection of relevant data under different operating conditions. Very few studies have been made to approach the viscosity effect upon cavitation erosion from the particle analysis standpoint. The aim of the present work is to identify the effect of liquid viscosity on the size, shape characteristics of the erosion particles and their morphological features. The prevailed mechanisms of wear and particle generation have been proposed based on the acquired information from particle analysis.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Bekir Sami Yilbas, Mazen Khaled, Sohail Akhtar and Cihan Karatas

Laser bending is a good candidate to replace the flame bending process. The electrochemical response of laser bending region changes due to the microstructural modifications and…

Abstract

Purpose

Laser bending is a good candidate to replace the flame bending process. The electrochemical response of laser bending region changes due to the microstructural modifications and high level of residual stress developed in the laser‐irradiated region after the bending process. Consequently, investigation into laser bending and microstructural changes in the irradiated region as well as the electrochemical response of bending section becomes essential. This paper aims to focus on the laser bending process.

Design/methodology/approach

The laser bending of steel sheets was carried out. The microstructural changes in the bending region are examined using the scanning electron microscopy and X‐ray diffraction. The electrochemical response of the bended sections is investigated through potentiodynamic tests.

Findings

It is found that laser‐irradiated surface is free from cracks and cavitations. However, deep pit sites due to secondary pitting are observed in the bending sections.

Research limitations/implications

The experiment is limited to certain thickness of the steel sheets. Increasing workpiece thickness reduces the bend angle. However, introducing high‐intensity laser beams improves the bend angle on the expense of high surface roughness in the bend section.

Practical implications

Laser bending process is involved with non‐mechanical tooling with low cost and precision of operation. Moreover, laser bending is a good candidate to replace the flame bending process. Consequently, laser bending finds application in industry. However, under the corrosive environment care should be taken.

Originality/value

The work presented is original and has not been published anywhere before. The findings will be useful for researchers and engineers working in the sheet metal forming area.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 November 2018

Chao Chen, Xiaojing Wang, Yifan Shen, Zhaolun Li and Jian Dong

Surface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient…

Abstract

Purpose

Surface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient. The purpose of this study is to find the appropriate surface texture to reduce vibration and improve the stability of journal bearings.

Design/methodology/approach

Micro-dimples, evenly distributed in a square array, were selected as the texture pattern and formed on the lower surface of bush by the laser surface texturing technique. Experiments were carried out to evaluate the effects of micro-dimples under different depths, densities and distributions.

Findings

The results are summarized in the form of shaft center orbits, waterfall illustrations and Hilbert-Huang transforms. In the entire test, it was found that an optimum geometric and distributive range of micro-dimples exists, where vibration acceleration can be decreased at least 3dB and stability can be greatly improved.

Originality/value

A majority of researchers devoted to studying on static characteristics, such as friction coefficient, load carrying capacity, pressure distribution and cavitation model. Besides, the influence of surface texture on stability of rotor-journal bearing system was rarely investigated and the recent examples can be found in Refs. (Ausas et al. 2007). However, a complete study of textured journal bearings has not been undertaken in the dynamic properties. Therefore, the purpose of this paper is to experimentally investigate the comprehensive effects of density, depth and distribution of micro-dimples on bearing vibration and stability.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1992

David Peacock

During the past three decades, as the Offshore Industry has developed its capabilities and capacity, there has been a corresponding drive to strengthen its weakest resource …

Abstract

During the past three decades, as the Offshore Industry has developed its capabilities and capacity, there has been a corresponding drive to strengthen its weakest resource — materials. Much research has been directed both to metallurgical and corrosion problems encountered in the hostile offshore working environment and there have been many repeated and expensive failures. Progressively more corrosion resistant alloys have been selected to replace the lowest cost industrial materials first selected. Frequent changes in the composition of stainless steels and copper based alloys have regularly, and in the event falsely, raised user expectations of performance. Very large quantities of new alloy formulations have been nastily put into service, with no track record of performance. Most operators today recognise that their materials package represents at best no more than a compromise and there is a continuing awareness of many problems still unsolved.

Details

Anti-Corrosion Methods and Materials, vol. 39 no. 12
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 2 December 2019

Yun Liu, Weiyuan Yu, Xuemin Sun and Fengfeng Wang

This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered…

Abstract

Purpose

This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered Ni/Sn/Ni samples.

Design/methodology/approach

The Ni/Sn/Ni joints were obtained through ultrasonic-assisted soldering. The formation of IMCs, their composition, grain morphology and the fractured-surface microstructures from shear tests were characterized using scanning electron microscopy and energy-dispersive x-ray spectroscopy.

Findings

Without USV, a planar interfacial Ni3Sn4 layer was formed at the Ni/Sn interface, and a few Ni3Sn4 grains were distributed in the soldered joint. The morphology of these grains was needle-shaped. With USV, several grooves were formed at the interfacial Ni3Sn4 layer due to ultrasonic cavitation. Some deepened grooves led to “neck” connections at the roots of the Ni3Sn4 grains, which accelerated the strong detachment of Ni3Sn4 from the substrate. In addition, two types of Ni3Sn4 grains, needle-shaped and granular-shaped, were observed at the interface. Furthermore, the shear strength increased with longer USV time, which was attributed to the thinning of the interfacial IMC layers and dispersion strengthening from the Ni3Sn4 particles distributed evenly in the joint.

Originality/value

The novelty of the paper is the detailed study of the effect of USV on the morphology, size changes of interfacial IMC and joint strength. This provides guidance for the application of ultrasonic-assisted soldering in electronics packaging.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 182