Search results

1 – 8 of 8
Article
Publication date: 13 June 2019

Rui Zhang, Lei Zhao, Dan Xie, Jinlong Song, Wendong Zhang, Lihu Pan and Yanhua Zhang

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT…

185

Abstract

Purpose

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT, a matched integrated adjustment circuit was designed through analyzing processing methods of transducer’s weak echo signal.

Design/methodology/approach

Based on the analysis of CMUT array structure and work principle, the CMUT units are designed and the dynamic performance analysis of SIMULINK is given according to the demand of underwater detecting. A transceiver isolation circuit is used to make transmission mode and receiving mode separate. A detection circuit is designed based on the transimpedance amplifier to achieve extraction of high-frequency and weak signal.

Findings

Through experimentation, the effectiveness of the CMUT performance simulation and the transceiver integrated adjustment circuit were verified. In addition, the test showed that CMUT with 400 kHz frequency has wider bandwidth and better dynamic characteristics than other similar transducers.

Originality/value

This paper provides a theoretical basis and design reference for the development and application of CMUT technology.

Article
Publication date: 12 September 2019

Hongliang Wang, Xiangjun Wang, Changde He and Chenyang Xue

As a new type of ultrasonic transducer with significant advantages, capacitive micromachined ultrasonic transducer (CMUT) has good application prospect. The reception…

Abstract

Purpose

As a new type of ultrasonic transducer with significant advantages, capacitive micromachined ultrasonic transducer (CMUT) has good application prospect. The reception characteristic of the CMUT is one of the important factors determining the application effect. This paper aims to study the reception characteristics of CMUT.

Design/methodology/approach

In this paper, the state equation is deduced and the analysis model is established in SIMULINK environment based on the lumped parameter system model of the CMUT cell. Based on this analysis model, the influencing factors of CMUT reception characteristics are studied and investigated, and the time-domain and frequency-domain characteristics are investigated in detail.

Findings

The analysis results show that parameters directly affect the reception characteristics of the CMUT, such as direct current (DC) bias voltage, input sound pressure amplitude and frequency. At the same time, the measurement system is built and the reception characteristics are verified.

Originality/value

This paper provides an effective method for rapid analyzing the reception characteristics of CMUT. These results provide an important theoretical basis and reference for further optimization of CMUT structure design, and lay a good foundation for the practical application measurement.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 June 2021

Tian Zhang, Wendong Zhang, XingLing Shao and Yang Wu

Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high…

121

Abstract

Purpose

Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high hardware complexity, so the purpose of this paper is to use less elements to achieve better imaging results. In this research, an optimized sparse array is studied, which can suppress the side lobe and reduce the imaging artifacts compared with the equispaced sparse array with the same number of elements.

Design/methodology/approach

Genetic algorithm is used to sparse the CMUT linear array, and Kaiser window apodization is added to reduce imaging artifacts, the beam pattern and peak-to-side lobe ratio are calculated, point targets imaging comparisons are performed. Furthermore, a 256-elements CMUT linear array is used to carry out the imaging experiment of embedded mass and forearm blood vessel, and the imaging results are compared quantitatively.

Findings

Through the imaging comparison of embedded mass and forearm blood vessel, the feasibility of optimized sparse array of CMUT is verified, and the purpose of reducing the hardware complexity is achieved.

Originality/value

This research provides a basis for the large-scale CMUT array to reduce the hardware complexity and the amount of calculation. At present, the CMUT array has been used in medical ultrasound imaging and has huge market potential.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1991

Martin Smith

An investigation has been carried out by Quo‐Tec Limited, on behalf of the Department of Trade and Industry's Advanced Sensors Technology Transfer Programme, to determine the…

Abstract

An investigation has been carried out by Quo‐Tec Limited, on behalf of the Department of Trade and Industry's Advanced Sensors Technology Transfer Programme, to determine the opportunities which exist in the UK transportation industries for advanced sensors. The study was concerned particularly with the identification of new business opportunities for UK Small and Medium‐sized Enterprises (SMEs). The study's boundaries were defined as the automotive, aerospace, rail and marine transportation sectors and the advanced sensor technologies of optical fibres and solid state. Piezoelectric, capacitive, inductive magnetoresistive, thin film, thick film and micromachined silicon devices were all included in the term solid state. These were highlighted because of the proven strength of UK research in many of these areas and yet, in many cases, a current lack of significant UK commercial exploitation. Through literature reviews, extensive telephone interviews and face‐to‐face discussions with key individuals in over 90 transportation companies, sensor companies and research institutions, a similar number of sensor requirements were identified. From this number, those requirements best addressed by optical or solid state sensor technology were selected. A criterion applied in the selection was that the need could be addressed by a UK SME (either alone or in collaboration) with a reasonable expectation that a sensor could be commercially available within five years. Preferably, proven technology should be available — the job of a sensor company is to develop the technology into a commercial product, not to do the fundamental research work to prove the technology itself. This article comprises some “prime” opportunities, thus identified, applicable to the automotive industry.

Details

Sensor Review, vol. 11 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 29 June 2010

Ali Bonakdar and Nagarajan Narayanan

The purpose of this paper is to present the design, analysis, fabrication, and assembly of four tooth annular microfabricated tactile sensors integrated with the upper and lower…

Abstract

Purpose

The purpose of this paper is to present the design, analysis, fabrication, and assembly of four tooth annular microfabricated tactile sensors integrated with the upper and lower jaws of an endoscopic surgical grasper tool, in order to determine the properties and particularly the compliance of the biological tissues during minimally invasive surgery.

Design/methodology/approach

A viscoelastic Kelvin model is employed for tissue characterization. A comprehensive closed form and finite element analysis has been carried out to express the relationship between the force ratio, compliance, and the equivalent viscous damping of the tissue. The designed sensor uses a polyvinyledene fluoride film as its sensing element. The sensor consists of arrays of rigid and compliant elements which are mounted on the tip of an endoscopic surgical grasper tool. Relative force between adjacent parts of the contact object is used to measure the viscoelastic properties.

Findings

The tactile sensor is able to characterize different viscoelastic properties of tissues. The experiments validate analytical and finite elements results.

Practical implications

The sensor is designed to integrate with the actual endoscopic tools to measure the softness of tissues.

Originality/value

A novel sensor‐tissue model is presented to characterize the variety of biological tissues.

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 August 2023

Shuai Yue, Ben Niu, Huanqing Wang, Liang Zhang and Adil M. Ahmad

This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.

Abstract

Purpose

This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.

Design/methodology/approach

A control scheme based on sliding mode surface with a hierarchical structure is introduced to enhance the responsiveness and robustness of the studied systems. An equivalent control and switching control rules are co-designed in a hierarchical sliding mode control (HSMC) framework to ensure that the system state reaches a given sliding surface and remains sliding on the surface, finally stabilizing at the equilibrium point. Besides, the input nonlinearities consist of non-symmetric saturation and dead-zone, which are estimated by an unknown bounded function and a known affine function.

Findings

Based on fuzzy logic systems and the hierarchical sliding mode control method, an adaptive fuzzy control method for uncertain switched under-actuated systems is put forward.

Originality/value

The “cause and effect” problems often existing in conventional backstepping designs can be prevented. Furthermore, the presented adaptive laws can eliminate the influence of external disturbances and approximation errors. Besides, in contrast to arbitrary switching strategies, the authors consider a switching rule with average dwell time, which resolves control problems that cannot be resolved with arbitrary switching signals and reduces conservatism.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 June 2005

Javad Dargahi and Siamak Najarian

Reviews the benefits and potential application of tactile sensors for use with robots.

4455

Abstract

Purpose

Reviews the benefits and potential application of tactile sensors for use with robots.

Design/methodology/approach

Includes the most recent advances in both the design/manufacturing of various tactile sensors and their applications in different industries. Although these types of sensors have been adopted in a considerable number of areas, the applications such as, medical, agricultural/livestock and food, grippers/manipulators design, prosthetic, and environmental studies have gained more popularity and are presented in this paper.

Findings

Robots can perform very useful and repetitive tasks in controlled environments. However, when the robots are required to handle the unstructured and changing environments, there is a need for more elaborate means to improve their performance. In this scenario, tactile sensors can play a major role. In the unstructured environments, the robots must be able to grasp objects (or tissues, in the case of medical robots) and move objects from one location to another.

Originality/value

In this work, the emphasis was on the most interesting and fast developing areas of the tactile sensors applications, including, medical, agriculture and food, grippers and manipulators design, prosthetic, and environmental studies.

Details

Industrial Robot: An International Journal, vol. 32 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 February 2021

S. Sarath and P. Sam Paul

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly…

Abstract

Purpose

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of the service period of the cutting tool while machining. It is significant to provide a corresponding real-time varying damping to control this chatter, which directly influences accuracy and quality of productivity. This paper aims to review the literature related to the application of smart fluid to control vibration in metal cutting and also focused on the challenges involved in the implementation of active control system during machining process.

Design/methodology/approach

Smart dampers, which are used as semi-active and active dampers in metal cutting, were reviewed and the research studies carried out in the field of the magnetorheological (MR) damper were concentrated. In smart materials, MR fluids possess some disadvantages because of their sedimentation of iron particles, leakage and slow response time. To overcome these drawbacks, new MR materials such as MR foam, MR elastomers, MR gels and MR plastomers have been recommended and suggested. This review intents to throw light into available literature which exclusively deals with controlling chatter in metal cutting with the help of MR damping methods.

Findings

Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration. In the past, many researchers have attempted to implement MR damper in metal cutting to control vibration and were successful. Various methods with the help of MR fluid are illustrated.

Research limitations/implications

A new cutting tool is always well-defined and sharp at the onset of metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of service period of cutting tool while machining. Application of MR damper along with the working methodology in metal cutting is presented, challenges met are analyzed and a scope for development is reviewed.

Practical implications

This study provides corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity. Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration.

Social implications

This study attempts to implement smart damper in metal cutting to control vibrations.

Originality/value

It is significant to provide corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 8 of 8