Search results

1 – 10 of over 1000
Article
Publication date: 21 June 2021

Tian Zhang, Wendong Zhang, XingLing Shao and Yang Wu

Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high…

121

Abstract

Purpose

Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high hardware complexity, so the purpose of this paper is to use less elements to achieve better imaging results. In this research, an optimized sparse array is studied, which can suppress the side lobe and reduce the imaging artifacts compared with the equispaced sparse array with the same number of elements.

Design/methodology/approach

Genetic algorithm is used to sparse the CMUT linear array, and Kaiser window apodization is added to reduce imaging artifacts, the beam pattern and peak-to-side lobe ratio are calculated, point targets imaging comparisons are performed. Furthermore, a 256-elements CMUT linear array is used to carry out the imaging experiment of embedded mass and forearm blood vessel, and the imaging results are compared quantitatively.

Findings

Through the imaging comparison of embedded mass and forearm blood vessel, the feasibility of optimized sparse array of CMUT is verified, and the purpose of reducing the hardware complexity is achieved.

Originality/value

This research provides a basis for the large-scale CMUT array to reduce the hardware complexity and the amount of calculation. At present, the CMUT array has been used in medical ultrasound imaging and has huge market potential.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 May 2000

Antonio Campo

A detailed comparative study of the heat transfer augmentation of in‐tube flows accounting for an array of equally‐spaced plate fins attached at the outer surface is undertaken…

Abstract

A detailed comparative study of the heat transfer augmentation of in‐tube flows accounting for an array of equally‐spaced plate fins attached at the outer surface is undertaken. The aim of the paper is to critically examine the thermal response of this kind of finned tubes to three different mathematical models: a complete 3‐D distributed model, a reduced 2‐D distributed/lumped hybrid model and two largely simplified 1‐D lumped models. For the three models tested, the computed results consistently demonstrate that the simplest 1‐D lumped model, with embedded arithmetic spatial‐ and geometric spatial‐means of the angular external convective coefficients provide dependable algebraic estimates of the actual heat transfer provided by the 3‐D distributed model with its indispensable finite‐difference solution. Further, an arithmetic mean of the maximum and minimum heat transfer supplied by the 1‐D lumped model delivered results that match those computed with the 3‐D distributed model. The most important steps of the mathematical derivations have been highlighted. A representative group of thermal performance diagrams is explained with the intent to assist engineers engaged in the thermal design of externally finned tubes of compact heat exchangers and HVAC devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 29 July 2019

Ren Yang, Qi Song and Pu Chen

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix…

Abstract

Purpose

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix triangular factorization (UMTF) method for non-topological modification proposed by Song et al. [Computers and Structures, 143(2014):60-72].

Design/methodology/approach

In this method, topological modifications are viewed as a union of symbolic and numerical change of structural matrices. The numerical part is dealt with UMTF by directly updating the matrix triangular factors. For symbolic change, an integral structure which consists of all potential nodes/elements is introduced to avoid side effects on the efficiency during successive modifications. Necessary pre- and post processing are also developed for memory-economic matrix manipulation.

Findings

The new reanalysis algorithm is applicable to successive general structural modifications for arbitrary modification amplitudes and locations. It explicitly updates the factor matrices of the modified structure and thus guarantees the accuracy as full direct analysis while greatly enhancing the efficiency.

Practical implications

Examples including evolutionary structural optimization and sequential construction analysis show the capability and efficiency of the algorithm.

Originality/value

This innovative paper makes direct topological reanalysis be applicable for successive structural modifications in many different areas.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2024

Bingbing Qi, Lijun Xu and Xiaogang Liu

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the…

Abstract

Purpose

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the direction-of-arrival (DOA) estimation performance of coherent signals at low signal-to-noise ratio (SNRs).

Design/methodology/approach

An improved multiple-Toeplitz matrices reconstruction method is proposed via quadratic spatial smoothing processing. Our proposed method takes advantage of the available information contained in the auto-covariance matrices of individual Toeplitz matrices and the cross-covariance matrices of different Toeplitz matrices, which results in a higher noise suppression ability.

Findings

Theoretical analysis and simulation results show that, compared with the existing Toeplitz matrix processing methods, the proposed method improves the DOA estimation performance in cases with a low SNR. Especially for the cases with a low SNR and small snapshot number as well as with closely spaced sources, the proposed method can achieve much better performance on estimation accuracy and resolution probability.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the DOA estimation of the coherent signals. The proposed technique enables achieve good estimation performance at low SNRs.

Practical implications

The paper includes implications for the DOA problem at low SNRs in communication systems.

Originality/value

The proposed method proved to be useful for the DOA estimation at low SNR.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 December 2019

Anna Pietrenko-Dabrowska and Slawomir Koziel

The purpose of this study is to propose a framework for expedited antenna optimization with numerical derivatives involving gradient variation monitoring throughout the…

Abstract

Purpose

The purpose of this study is to propose a framework for expedited antenna optimization with numerical derivatives involving gradient variation monitoring throughout the optimization run and demonstrate it using a benchmark set of real-world wideband antennas. A comprehensive analysis of the algorithm performance involving multiple starting points is provided. The optimization results are compared with a conventional trust-region (TR) procedure, as well as the state-of-the-art accelerated TR algorithms.

Design/methodology/approach

The proposed algorithm is a modification of the TR gradient-based algorithm with numerical derivatives in which a monitoring of changes of the system response gradients is performed throughout the algorithm run. The gradient variations between consecutive iterations are quantified by an appropriately developed metric. Upon detecting stable patterns for particular parameter sensitivities, the costly finite differentiation (FD)-based gradient updates are suppressed; hence, the overall number of full-wave electromagnetic (EM) simulations is significantly reduced. This leads to considerable computational savings without compromising the design quality.

Findings

Monitoring of the antenna response sensitivity variations during the optimization process enables to detect the parameters for which updating the gradient information is not necessary at every iteration. When incorporated into the TR gradient-search procedures, the approach permits reduction of the computational cost of the optimization process. The proposed technique is dedicated to expedite direct optimization of antenna structures, but it can also be applied to speed up surrogate-assisted tasks, especially solving sub-problems that involve performing numerous evaluations of coarse-discretization models.

Research limitations/implications

The introduced methodology opens up new possibilities for future developments of accelerated antenna optimization procedures. In particular, the presented routine can be combined with the previously reported techniques that involve replacing FD with the Broyden formula for directions that are satisfactorily well aligned with the most recent design relocation and/or performing FD in a sparse manner based on relative design relocation (with respect to the current search region) in consecutive algorithm iterations.

Originality/value

Benchmarking against a conventional TR procedure, as well as previously reported methods, confirms improved efficiency and reliability of the proposed approach. The applications of the framework include direct EM-driven design closure, along with surrogate-based optimization within variable-fidelity surrogate-assisted procedures. To the best of the authors’ knowledge, no comparable approach to antenna optimization has been reported elsewhere. Particularly, it surmounts established methodology by carrying out constant supervision of the antenna response gradient throughout successive algorithm iterations and using gathered observations to properly guide the optimization routine.

Article
Publication date: 1 March 1991

ROY RADA, JUDITH BARLOW, JAN POTHARST, PIETER ZANSTRA and DJUJAN BIJSTRA

A thesaurus may be viewed as a graph, and document retrieval algorithms can exploit this graph when both the documents and the query are represented by thesaurus terms. These…

Abstract

A thesaurus may be viewed as a graph, and document retrieval algorithms can exploit this graph when both the documents and the query are represented by thesaurus terms. These retrieval algorithms measure the distance between the query and documents by using the path lengths in the graph. Previous work with such strategies has shown that the hierarchical relations in the thesaurus are useful but the non‐hierarchical relations are not. This paper shows that when the query explicitly mentions a particular non‐hierarchical relation, the retrieval algorithm benefits from the presence of such relations in the thesaurus. Our algorithms were applied to the Excerpta Medica bibliographic citation database whose citations are indexed with terms from the EMTREE thesaurus. We also created an enriched EMTREE by systematically adding non‐hierarchical relations from a medical knowledge base. Our algorithms used at one time EMTREE and, at another time, the enriched EMTREE in the course of ranking documents from Excerpta Medica against queries. When, and only when, the query specifically mentioned a particular non‐hierarchical relation type, did EMTREE enriched with that relation type lead to a ranking that better corresponded to an expert's ranking.

Details

Journal of Documentation, vol. 47 no. 3
Type: Research Article
ISSN: 0022-0418

Book part
Publication date: 1 January 1991

Abstract

Details

Operations Research for Libraries and Information Agencies: Techniques for the Evaluation of Management Decision Alternatives
Type: Book
ISBN: 978-0-12424-520-4

Article
Publication date: 14 December 2021

D.D. Devisasi Kala and D. Thiripura Sundari

Optimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is…

Abstract

Purpose

Optimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.

Design/methodology/approach

Design of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.

Findings

In the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.

Originality/value

The originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.

Article
Publication date: 1 March 1992

Kevin C. O'Kane

Information storage and retrieval (IS&R) programming is often hindered by the lack of specialized facilities in traditional computer languages. This article describes a portable…

Abstract

Information storage and retrieval (IS&R) programming is often hindered by the lack of specialized facilities in traditional computer languages. This article describes a portable programming language, derived from the C and Mumps languages and designed to meet the needs of IS&R applications. The language allows the user to deal with an IS&R database at a level of abstraction consistent with many theoretical models commonly in use. Examples from a pilot implementation of a statistically‐based retrieval system are given which demonstrate that this approach results in substantial savings in disk storage and greater coding efficiency when compared with traditional implementation techniques.

Details

Online Review, vol. 16 no. 3
Type: Research Article
ISSN: 0309-314X

Article
Publication date: 30 August 2022

Devika E. and Saravanan A.

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems…

51

Abstract

Purpose

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.

Design/methodology/approach

The proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.

Findings

The performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.

Originality/value

The proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 1000