Search results

1 – 5 of 5
Article
Publication date: 27 October 2020

Pavana Kumara Bellairu, Shreeranga Bhat and E.V. Gijo

The aim of this article is to demonstrate the development of environment friendly, low cost natural fibre composites by robust engineering approach. More specifically, the prime…

Abstract

Purpose

The aim of this article is to demonstrate the development of environment friendly, low cost natural fibre composites by robust engineering approach. More specifically, the prime objective of the study is to optimise the composition of natural fibre reinforced polymer nanocomposites using a robust statistical approach.

Design/methodology/approach

In this research, the material is prepared using multi-walled carbon nanotubes (MWCNT), Cantala fibres and Epoxy Resin in accordance with the ASTM (American Society for Testing and Materials) standards. Further, the composition is prepared and optimised using the mixture-design approach for the flexural strength of the material.

Findings

The results of the study indicate that MWCNT plays a vital role in increasing the flexural strength of the composite. Moreover, it is observed that interactions between second order and third order parameters in the composition are statistically significant. This leads to proposing a special cubic model for the novel composite material with residual analysis. Moreover, the methodology assists in optimising the mixture component values to maximise the flexural strength of the novel composite material.

Originality/value

This article attempts to include both MWCNT and Cantala fibres to develop a novel composite material. In addition, it employs the mixture-design technique to optimise the composition and predict the model of the study in a step-by-step manner, which will act as a guideline for academicians and practitioners to optimise the material composition with specific reference to natural fibre reinforced nanocomposites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

76

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 July 2020

Dinesh Shinde, Mukesh Bulsara and K.N. Mistry

The purpose of this paper is to evaluate experimentally the influence of different surface roughness of the contacting disc on tribological performance of the non-asbestos brake…

Abstract

Purpose

The purpose of this paper is to evaluate experimentally the influence of different surface roughness of the contacting disc on tribological performance of the non-asbestos brake friction material (BFM).

Design/methodology/approach

Taguchi method was applied to design an experiment using three different discs of gray cast iron with different surface roughness, which is measured using optical profilometer. These discs were subjected to sliding against pins prepared with the developed non-asbestos BFM, using pin on disc friction and wear monitor.

Findings

The experimental results shows that the disc 2 (Ra = 3.77 µm) gives wear of 22.78 µm and coefficient of friction of 0.462, which is recommended for extreme brake performance. Analysis of Taguchi design revealed that the disc surface was most significant parameter among the parameters under study.

Practical implications

During braking, continuous sliding between the BFM and brake disc or drum not only results into wear of BFM but also changes the surface finish of the brake drum or disc. This leads to variation in surface topography of the drum or disc surface with application of brakes, which further affects the characteristics of the BFM.

Originality/value

The tribological performance of BFM depends upon the topography of the surface on which it was sliding. To get best performance of the non-asbestos friction materials, disc having moderate surface finish is recommended. Scanning electron microscope micrographs had shown the different plateaus formed and energy-dispersive X-ray spectroscopy spectra identified presence of different chemical elements prior to sliding of the pins surface over different discs surface topography.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0120/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2024

Chiranjeevi Pachappareddy, Chinmaya Prasad Padhy and Srinivas Pendyala

This study aims to investigate the mechanical, thermal and water absorption (WA) properties of kenaf fiber (KF) composites hybridized with powdered Acacia concinna pods (ACP).

Abstract

Purpose

This study aims to investigate the mechanical, thermal and water absorption (WA) properties of kenaf fiber (KF) composites hybridized with powdered Acacia concinna pods (ACP).

Design/methodology/approach

Kenaf fiber reinforced epoxy polymer hybrid composite was fabricated using several weight percentages of ACP powder as filler (0%, 2%, 4%, 6% and 8%), both with and without chemically altering the fiber mat. 6 Wt.% NaOH was used in distilled water to treat KF mat chemically. The hand layup technique is used to produce ASTM-compliant KF hybrid laminates. Tensile, flexural and IZOD impact strengths were tested on the generated hybrid composites and their thermal and WA characteristics. Scanning electron microscope fractography revealed that fiber pulling-out, debonding and cracking were the main ways composites fractured.

Findings

The investigation findings reveal that the tensile, flexural and impact strengths increased when ACP fillers were added up to 4, 6 and 8 Wt.%, respectively. Thermogravimetric analysis indicates that the hybrid composite is thermally stable up to 215°C. WA experiments reveal that KF mat composites treated with 0 Wt.% ACP filler had less WA than those not treated with ACP filler. The treated KF with 4% filler hybrid composite demonstrated improved interfacial bonding between the reinforcement and matrix compared to other combinations.

Originality/value

Although filler made of A. concinna is inexpensive, lightweight, renewable, totally or partially recyclable and biodegradable, its potential application in hybridizing composites is yet to be investigated. Hybridizing the KF mat with ACP filler in an epoxy matrix produced novel hybrid composites. Evaluations have been conducted on the effects of ACP filler on the mechanical, thermal and WA characteristics of composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 5 of 5