Search results

1 – 10 of 183
Article
Publication date: 8 May 2019

Zhi Ding and Danwei Li

This paper aims to evaluate the dynamic response of surrounding foundation and study the vibration characteristics of track system.

287

Abstract

Purpose

This paper aims to evaluate the dynamic response of surrounding foundation and study the vibration characteristics of track system.

Design/methodology/approach

A double-line underground coupling analysis model was established, which included two moving train, track, liner and the ground field.

Findings

Based on the 2.5D (D is diameter) finite element analysis, the influence of the important factors such as the depth of the subway tunnel, the nature of the foundation soil, the relative position relation of the double tunnel, the subway driving speed on the foundation and the orbital vibration are analyzed in this article.

Originality/value

The results in paper may have reference value for the prediction of train induced vibrations and for the research of dynamic response of ground field.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 September 2019

Monica Malhotra, Vaishali Sahu, Amit Srivastava and Anil Kumar Misra

The purpose of this study is to investigate the effect of presence of buried flexible pipe on the bearing capacity of shallow footing. First, a model study is performed where…

Abstract

Purpose

The purpose of this study is to investigate the effect of presence of buried flexible pipe on the bearing capacity of shallow footing. First, a model study is performed where shallow footing model is tested for its load settlement behavior, with and without the existence of buried PVC pipe lying vertically below the base of the footing.

Design/methodology/approach

The experimental set-up consisted of a steel box filled with sand at two different relative density values [RD = 50 per cent (medium dense) and RD = 80 per cent (dense sand)] and vertical load was applied on the model footing through hydraulic jack and reaction frame arrangement connected with a proving ring. Test results are verified numerically using commercially available finite element code PLAXIS 2D. With due verification, a parametric study has been conducted, numerically, by varying the range of input parameters, such as unit weight, angle of internal friction, diameter of buried conduit and the Elastic modulus of the soil to assess the pre cent reduction in the capacity of the foundation soil because of the presence of underlying buried flexible pipe.

Findings

Results show that for each footing, there exists a critical depth below which the presence of the buried conduit has negligible influence on the footing performance. When the conduit is located above the critical depth, the bearing capacity of the footing varies with various factors, such as geotechnical parameters of soil and location and diameter of the buried conduit.

Originality/value

It is an original paper performed to assess the presence of buried flexible pipe on the bearing capacity of the shallow footing.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 2 June 2023

Junru Zhang, Yumeng Liu and Bo Yan

This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.

Abstract

Purpose

This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.

Design/methodology/approach

First, taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion, the critical buried depth of the large section tunnel was determined. Then, the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios, and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality (BQ) index of the rock for different rock classes. Finally, the influences of thickness-span ratio, groundwater, initial stress of rock and structural attitude factors were considered to obtain the corrected BQ, based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed. This evaluation method was then applied to Liuyuan Tunnel and Cimushan No. 2 Tunnel of Chongqing Urban Expressway for verification.

Findings

This study shows that under different rock classes, the tunnel safety factor is a strict power function of the thickness-span ratio, while a linear function of the BQ to some extent. It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.

Originality/value

The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability. The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.

Open Access
Article
Publication date: 2 May 2022

Ao Li, Dingli Zhang, Zhenyu Sun, Jun Huang and Fei Dong

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to…

Abstract

Purpose

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.

Design/methodology/approach

In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway. An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.

Findings

Microseismic events can be divided into high density area, medium density area and low density area according to the density distribution of microseismic events. The positions where the cumulative distribution frequencies of microseismic events are 60 and 80% are identified as the boundaries between high and medium density areas and between medium and low density areas, respectively. The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock, which is affected by the grade of surrounding rock and the span of tunnel. The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters. The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock. The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed. Based on the depth of high excavation damage zone of surrounding rock, the prestressed anchor cable (rod) is designed, and the safety of anchor cable (rod) design parameters is verified by the deformation results of surrounding rock.

Originality/value

The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable (rod).

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 17 November 2023

Hong-tao Zhang, Shan Liu, Lan-xi Sun and Yu-fei Zhao

There have been limited investigations on the mechanical characteristics of tunnels supported by corrugated plate structures during fault dislocation. The authors obtained…

Abstract

Purpose

There have been limited investigations on the mechanical characteristics of tunnels supported by corrugated plate structures during fault dislocation. The authors obtained circumferential and axial deformations of the spiral corrugated pipe at various fault displacements. Lastly, the authors examined the impact of reinforced spiral stiffness and soil constraints on the support performance of corrugated plate tunnels under fault displacement.

Design/methodology/approach

By employing the theory of similarity ratios, the authors conducted model tests on spiral corrugated plate support using loose sand and PVC (polyvinyl chloride) spiral corrugated PE pipes for cross-fault tunnels. Subsequently, the soil spring coefficient for tunnel–soil interaction was determined in accordance with ASCE (American Society of Civil Engineers) specifications. Numerical simulations were performed on spiral corrugated pipes with fault dislocation, and the results were compared with the experimental data, enabling the determination of the variation pattern of the soil spring coefficient.

Findings

The findings indicate that the maximum axial tensile and compressive strains occur on both sides of the fault. As the reinforced spiral stiffness reaches a certain threshold, the deformation of the corrugated plate tunnel and the maximum fault displacement stabilize. Furthermore, a stronger soil constraint leads to a lower maximum fault displacement that the tunnel can withstand.

Research limitations/implications

In this study, the calculation formula for density similarity ratio cannot be taken into account due to the limitations of the helical corrugated tube process and the focus on the deformation pattern of helical corrugated tubes under fault action.

Originality/value

This study provides a basis for the mechanical properties of helical corrugated tube tunnels under fault misalignment and offers optimization solutions.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 18 August 2023

Yi-Kang Liu, Xin-Yuan Liu, E. Deng, Yi-Qing Ni and Huan Yue

This study aims to propose a series of numerical and surrogate models to investigate the aerodynamic pressure inside cracks in high-speed railway tunnel linings and to predict the…

Abstract

Purpose

This study aims to propose a series of numerical and surrogate models to investigate the aerodynamic pressure inside cracks in high-speed railway tunnel linings and to predict the stress intensity factors (SIFs) at the crack tip.

Design/methodology/approach

A computational fluid dynamics (CFD) model is used to calculate the aerodynamic pressure exerted on two cracked surfaces. The simulation uses the viscous unsteady κ-ε turbulence model. Using this CFD model, the spatial and temporal distribution of aerodynamic pressure inside longitudinal, oblique and circumferential cracks are analyzed. The mechanism behind the pressure variation in tunnel lining cracks is revealed by the air density field. Furthermore, a response surface model (RSM) is proposed to predict the maximum SIF at the crack tip of circumferential cracks and analyze its influential parameters.

Findings

The initial compression wave amplifies and oscillates in cracks in tunnel linings, resulting from an increase in air density at the crack front. The maximum pressure in the circumferential crack is 2.27 and 1.76 times higher than that in the longitudinal and oblique cracks, respectively. The RSM accurately predicts the SIF at the crack tip of circumferential cracks. The SIF at the crack tip is most affected by variations in train velocities, followed by the depth and length of the cracks.

Originality/value

The mechanism behind the variation of aerodynamic pressure in tunnel lining cracks is revealed. In addition, a reliable surrogate model is proposed to predict the mechanical response of the crack tip under aerodynamic pressures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2007

M. Grujicic, B. Pandurangan, I. Haque, B.A. Cheeseman, W.N. Roy and R.R. Skaggs

The kinematic response (including plastic deformation, failure initiation and fracture) of a soft‐skinned vehicle (represented by a F800 series single‐unit truck) to the…

Abstract

The kinematic response (including plastic deformation, failure initiation and fracture) of a soft‐skinned vehicle (represented by a F800 series single‐unit truck) to the detonation of a landmine shallow‐buried in (either dry or saturated sand) underneath the vehicle’s front right wheel is analyzed computationally. The computational analysis included the interactions of the gaseous detonation products and the sand ejecta with the vehicle and the transient non‐linear dynamics response of the vehicle. A frequency analysis of the pressure versus time signals and visual observation clearly show the differences in the blast loads resulting from the landmine detonation in dry and saturated sand as well as the associated kinematic response of the vehicle. It is noted that the dominant vehicle structural response to the blast is similar to the first torsional structural mode shape obtained through an eigenvalue analysis of the system. Tailoring the vehicle modal response may result in more desirable modes of failure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2004

J.P. Morris, M.B. Rubin, S.C. Blair, L.A. Glenn and F.E. Heuze

We present the preliminary results from a parameter study investigating the stability of underground structures in response to explosion‐induced strong ground motions. In…

1660

Abstract

We present the preliminary results from a parameter study investigating the stability of underground structures in response to explosion‐induced strong ground motions. In practice, even the most sophisticated site characterization may lack key details regarding precise joint properties and orientations within the rock mass. Thus, in order to place bounds upon the predicted behavior of a given facility, an extensive series of simulations representing different realizations may be required. The influence of both construction parameters (reinforcement, rock bolts, liners) and geological parameters (joint stiffness, joint spacing and orientation, and tunnel diameter to block size ratio) must be considered. We discuss the distinct element method (DEM) with particular emphasis on techniques for achieving improved computational efficiency, including the handling of contact detection and approaches to parallelization. We introduce a new approach for simulating deformation of the discrete blocks using the theory of a Cosserat point, which does not require internal discretization of the blocks. We also outline the continuum techniques we employ to obtain boundary conditions for the distinct element simulations. We present results from simulations of dynamic loading of several generic subterranean facilities in hard rock, demonstrating the suitability of the DEM for this application. These results demonstrate the significant role that joint geometry plays in determining the response of a given facility.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Dong Li, Bin Chen and Guo-Xiang Wang

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse…

Abstract

Purpose

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse dye laser and Nd:YAG laser, explain the incomplete clear of the lesion and optimize the laser parameter.

Design/methodology/approach

The complex structure of skin and PWS is simplified to a multi-layer skin model that consists of top epidermal layer and underneath dermis layer embedded with discrete blood vessels. The cooling effect of cryogen spray before laser firing is quantified by a general correlation obtained recently from the experimental data. The light distribution is modeled by the Monte Carlo method. The heat transfer in skin tissue is calculated by Pennes bioheat transfer model. The thermal damage of blood vessel is quantified by the Arrhenius damage integral.

Findings

For the vessel size studied (10-120 µm), pulse duration is recommended shorter than 6 ms. Large and deeply buried vessels, which may survive from 595 nm laser irradiation, can be coagulated by 1,064 nm laser due to its deep light penetration depth in skin. Furthermore, a desired uniform heating within the large vessel lumen can be achieved by 1,064 nm laser whereas 595 nm laser produce non-uniform heating.

Originality/value

The possible reason for the poor responding and incomplete clearance lesions is clarified. Laser wavelength and pulse duration are suggested to improve the clinical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 183