Search results

1 – 10 of 51
Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2019

Zhi Ding and Danwei Li

This paper aims to evaluate the dynamic response of surrounding foundation and study the vibration characteristics of track system.

287

Abstract

Purpose

This paper aims to evaluate the dynamic response of surrounding foundation and study the vibration characteristics of track system.

Design/methodology/approach

A double-line underground coupling analysis model was established, which included two moving train, track, liner and the ground field.

Findings

Based on the 2.5D (D is diameter) finite element analysis, the influence of the important factors such as the depth of the subway tunnel, the nature of the foundation soil, the relative position relation of the double tunnel, the subway driving speed on the foundation and the orbital vibration are analyzed in this article.

Originality/value

The results in paper may have reference value for the prediction of train induced vibrations and for the research of dynamic response of ground field.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 August 2022

Rama K. Malladi

Critics say cryptocurrencies are hard to predict and lack both economic value and accounting standards, while supporters argue they are revolutionary financial technology and a…

2311

Abstract

Purpose

Critics say cryptocurrencies are hard to predict and lack both economic value and accounting standards, while supporters argue they are revolutionary financial technology and a new asset class. This study aims to help accounting and financial modelers compare cryptocurrencies with other asset classes (such as gold, stocks and bond markets) and develop cryptocurrency forecast models.

Design/methodology/approach

Daily data from 12/31/2013 to 08/01/2020 (including the COVID-19 pandemic period) for the top six cryptocurrencies that constitute 80% of the market are used. Cryptocurrency price, return and volatility are forecasted using five traditional econometric techniques: pooled ordinary least squares (OLS) regression, fixed-effect model (FEM), random-effect model (REM), panel vector error correction model (VECM) and generalized autoregressive conditional heteroskedasticity (GARCH). Fama and French's five-factor analysis, a frequently used method to study stock returns, is conducted on cryptocurrency returns in a panel-data setting. Finally, an efficient frontier is produced with and without cryptocurrencies to see how adding cryptocurrencies to a portfolio makes a difference.

Findings

The seven findings in this analysis are summarized as follows: (1) VECM produces the best out-of-sample price forecast of cryptocurrency prices; (2) cryptocurrencies are unlike cash for accounting purposes as they are very volatile: the standard deviations of daily returns are several times larger than those of the other financial assets; (3) cryptocurrencies are not a substitute for gold as a safe-haven asset; (4) the five most significant determinants of cryptocurrency daily returns are emerging markets stock index, S&P 500 stock index, return on gold, volatility of daily returns and the volatility index (VIX); (5) their return volatility is persistent and can be forecasted using the GARCH model; (6) in a portfolio setting, cryptocurrencies exhibit negative alpha, high beta, similar to small and growth stocks and (7) a cryptocurrency portfolio offers more portfolio choices for investors and resembles a levered portfolio.

Practical implications

One of the tasks of the financial econometrics profession is building pro forma models that meet accounting standards and satisfy auditors. This paper undertook such activity by deploying traditional financial econometric methods and applying them to an emerging cryptocurrency asset class.

Originality/value

This paper attempts to contribute to the existing academic literature in three ways: Pro forma models for price forecasting: five established traditional econometric techniques (as opposed to novel methods) are deployed to forecast prices; Cryptocurrency as a group: instead of analyzing one currency at a time and running the risk of missing out on cross-sectional effects (as done by most other researchers), the top-six cryptocurrencies constitute 80% of the market, are analyzed together as a group using panel-data methods; Cryptocurrencies as financial assets in a portfolio: To understand the linkages between cryptocurrencies and traditional portfolio characteristics, an efficient frontier is produced with and without cryptocurrencies to see how adding cryptocurrencies to an investment portfolio makes a difference.

Details

China Accounting and Finance Review, vol. 25 no. 2
Type: Research Article
ISSN: 1029-807X

Keywords

Article
Publication date: 21 December 2020

Lihua Wu, Mi Zhao and Xiuli Du

The finite element method (FEM) is used to calculate the two-dimensional anti-plane dynamic response of structure embedded in D’Alembert viscoelastic multilayered soil on the…

183

Abstract

Purpose

The finite element method (FEM) is used to calculate the two-dimensional anti-plane dynamic response of structure embedded in D’Alembert viscoelastic multilayered soil on the rigid bedrock. This paper aims to research a time-domain absorbing boundary condition (ABC), which should be imposed on the truncation boundary of the finite domain to represent the dynamic interaction between the truncated infinite domain and the finite domain.

Design/methodology/approach

A high-order ABC for scalar wave propagation in the D’Alembert viscoelastic multilayered media is proposed. A new operator separation method and the mode reduction are adopted to construct the time-domain ABC.

Findings

The derivation of the ABC is accurate for the single layer but less accurate for the multilayer. To achieve high accuracy, therefore, the distance from the truncation boundary to the region of interest can be zero for the single layer but need to be about 0.5 times of the total layer height of the infinite domain for the multilayer. Both single-layered and multilayered numerical examples verify that the accuracy of the ABC is almost the same for both cases of only using the modal number excited by dynamic load and using the full modal number of infinite domain. Using the ABC with reduced modes can not only reduce the computation cost but also be more friendly to the stability. Numerical examples demonstrate the superior properties of the proposed ABC with stability, high accuracy and remarkable coupling with the FEM.

Originality/value

A high-order time-domain ABC for scalar wave propagation in the D’Alembert viscoelastic multilayered media is proposed. The proposed ABC is suitable for both linear elastic and D’Alembert viscoelastic media, and it can be coupled seamlessly with the FEM. A new operator separation method combining mode reduction is presented with better stability than the existing methods.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 August 2021

Mayur Pratap Singh, Pavan Kumar Meena, Kanwer Singh Arora, Rajneesh Kumar and Dinesh Kumar Shukla

This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of…

Abstract

Purpose

This paper aims to measure peak temperatures and cooling rates for distinct locations of thermocouples in the butt weld joint of mild steel plates. For experimental measurement of peak temperatures, K-type thermocouples coupled with a data acquisition system were used at predetermined locations. Thereafter, Rosenthal’s analytical models for thin two-dimensional (2D) and thick three-dimensional (3D) plates were adopted to predict peak temperatures for different thermocouple positions. A finite element model (FEM) based on an advanced prescribed temperature approach was adopted to predict time-temperature history for predetermined locations of thermocouples.

Design/methodology/approach

Comparing experimental and Rosenthal analytical models (2D and 3D) findings show that predicted and measured peak temperatures are in close agreement, while cooling rates predicted by analytical models (2D, 3D) show significant variation from measured values. On the other hand, 3D FEM simulation predicted peak temperatures and cooling rates for different thermocouple positions are close to experimental findings.

Findings

The inclusion of filler metal during simulation of welding rightly replicates the real welding situation and improves outcomes of the analysis.

Originality/value

The present study is an original contribution to the field of welding technology.

Article
Publication date: 9 August 2013

Jian Liu, Juan Song, Qiangyong Zhang and Wenqian Zhang

The purpose of this paper is to analyze stability of Jintan underground rock salt gas storage caverns during operation period. Some factors such as complex geological and…

Abstract

Purpose

The purpose of this paper is to analyze stability of Jintan underground rock salt gas storage caverns during operation period. Some factors such as complex geological and operation conditions and high variability of physico‐mechanical parameters which will influence the safety of underground storage caverns are also considered.

Design/methodology/approach

In this paper, taking account of stability and sealability, numerical models of single cavern and two caverns for Jintan rock salt are established and calculated based on Mohr‐Coulomb criterion and damage‐dilatancy criterion. Response surface method combining with Monte Carlo method are adopted to calculate the failure probabilities of elements near the caverns. Various working conditions including different operation pressures and distances between caverns are also considered.

Findings

Shear failure is the main failure mode of Jintan underground rock salt gas storage caverns. The major failure area is located in the middle of the cavern. Reliability of the middle part of the cavern improves as storage pressure increases.

Research limitations/implications

According to the simulation results on stability and sealability of caverns, the smallest internal operation pressure should be controlled strictly during the gas release process. Plastic area and failure probabilities of elements near the caverns increase obviously as the distance between caverns decreases. Damaged and dilatancy areas have the same trend. Twice the diameter of the cavern is recommended as the minimum distance between caverns.

Originality/value

The conclusions can be used as a guide during operation and design period of underground caverns.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 May 2014

D.C. Lo, Chih-Min Hsieh and D.L. Young

The main advantage of the proposed method is that the computations can be performed on a Cartesian grid with complex immersed boundaries (IBs). The purpose of this paper is to…

Abstract

Purpose

The main advantage of the proposed method is that the computations can be performed on a Cartesian grid with complex immersed boundaries (IBs). The purpose of this paper is to device a numerical scheme based on an embedding finite element method for the solution of two-dimensional (2D) Navier-Stokes equations.

Design/methodology/approach

Geometries featuring the stationary solid obstacles in the flow are embedded in the Cartesian grid with special discretizations near the embedded boundary to ensure the accuracy of the solution in the cut cells. To comprehend the complexities of the viscous flows with IBs, the paper adopts a compact interpolation scheme near the IBs that allows to satisfy the second-order accuracy and the conservation property of the solver. The interpolation scheme is designed by virtue of the shape function in the finite element scheme.

Findings

Three numerical examples are selected to demonstrate the accuracy and flexibility of the proposed methodology. Simulation of flow past a circular cylinder for a range of Re=20-200 shows excellent agreements with other results using different numerical schemes. Flows around a pair of tandem cylinders and several bodies are particularly investigated. The paper simulates the time-based variation of the flow phenomena for uniform flow past a pair of cylinders with various streamwise gaps between two cylinders. The results in terms of drag coefficient and Strouhal number show excellent agreements with the results available in the literature.

Originality/value

Details of the flow characteristics, such as velocity distribution, pressure and vorticity fields are presented. It is concluded the combined embedding boundary method and FE discretizations are robust and accurate for solving 2D fluid flows with complex IBs.

Details

Engineering Computations, vol. 31 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 July 2019

Jasmin Smajic

The paper presents a new variant of the H-Φ field formulation for solving 3-D magnetostatic and frequency domain eddy current problems. The suggested formulation uses the vector…

Abstract

Purpose

The paper presents a new variant of the H-Φ field formulation for solving 3-D magnetostatic and frequency domain eddy current problems. The suggested formulation uses the vector and scalar tetrahedral elements within conducting and non-conducting domains, respectively. The presented numerical method is capable of solving multiply connected regions and eliminates the need for computing the source current density and the source magnetic field before the actual magnetostatic and eddy current simulations. The obtained magnetostatic results are verified by comparison against the corresponding results of the standard stationary current distribution analysis combined with the Biot-Savart integration. The accuracy of the eddy current results is demonstrated by comparison against the classical A-A-f approach in frequency domain.

Design/methodology/approach

The theory and implementation of the new H-Φ magnetostatic and eddy current solver is presented in detail. The method delivers reliable results without the need to compute the source current density and source magnetic field before the actual simulation.

Findings

The proposed H-Φ produce radically smaller and considerably better conditioned equation systems than the alternative A-A approach, which usually requires the unphysical regularization in terms of a low electric conductivity value within the nonconductive domain.

Originality/value

The presented numerical method is capable of solving multiply connected regions and eliminates the need for computing the source current density and the source magnetic field before the actual magnetostatic and eddy current simulations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 51