Search results

1 – 10 of 233
Article
Publication date: 31 May 2022

Sutapa Mondal and Arup Kumar Nandi

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake…

Abstract

Purpose

The purpose of this paper is to design an improved parallel regenerative braking system (IPRBS) for electric vehicles (EVs) that increases energy recovery with a constant brake pedal feel (BPF).

Design/methodology/approach

The conventional hydro-mechanical braking system is redesigned by incorporating a reversing linear solenoid (RLS) and allowed to work in parallel with a regenerative brake. A braking algorithm is proposed, and correspondingly, a control system is designed for the IPRBS for its proper functioning, and a mathematical model is formulated considering vehicle drive during braking. The effectiveness of IPRBS is studied by analyzing two aspects of regenerative braking (BPF and regenerative efficiency) and the impact of regenerative braking contribution to range extension and energy consumption reduction under European Union Urban Driving Cycle (ECE).

Findings

IPRBS is found to maintain a constant BPF in terms of deceleration rate vs pedal displacement during the entire braking period irrespective of speed change and deceleration rate. The regenerative ratio of IPRBS is found to be high compared with conventional parallel regenerative braking, but it is quite the same at high deceleration.

Originality/value

A constant BPF is achieved by introducing an RLS between the input pushrod and booster input rod with appropriate controller design. Comparative analysis of energy regenerated under different regenerative conditions establishes the originality of IPRBS. An average contribution ratio to energy consumption reduction and driving range extension of IPRBS in ECE are obtained as 18.38 and 22.76, respectively.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 17 November 2023

Yujie Ren and Hai Chi

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Abstract

Purpose

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Design/methodology/approach

This paper summarizes and analyzes typical faults of the brake controller, and proposes four categories of faults: position sensor faults, microswitch faults, mechanical faults and communication faults. Suggestions and methods for improving the safety of the brake controller are also presented.

Findings

In this paper, a self-judgment and self-learning dynamic calibration method is proposed, which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift. This paper also proposes a logic for diagnosing and handling microswitch faults. Suggestions are proposed for other faults of brake controller.

Originality/value

The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 20 September 2022

Lalit Narendra Patil, Hrishikesh P. Khairnar and S.G. Bhirud

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain…

Abstract

Purpose

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain incidences. Although electric vehicles are free from exhaust emission gases, the wear particles coming out from disc brakes are still unresolved issues. Therefore, the purpose of the present paper is to introduce a smart eco-friendly braking system that uses signal processing and integrated technologies to eventually build a comprehensive driver assistance system.

Design/methodology/approach

The parameters obstacle identification, driver drowsiness, driver alcohol situation and heart rate were all taken into account. A contactless brake blending system has been designed while upgrading a rapid response. The implemented state flow rule-based decision strategy validated with the outcomes of a novel experimental setup.

Findings

The drowsiness state of drivers was successfully identified for the proposed control map and set up vindicated with the improvement in stopping time, atmospheric environment and increase in vehicle active safety regime.

Originality/value

The present study adopted a unique approach and obtained a brake blending system for improved braking performance as well as overall safety enhancement with rapid control of the vehicle.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 May 2022

Vinoth Kumar K., Loganathan T.G. and Jagadeesh G.

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Abstract

Purpose

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Design/methodology/approach

The design methodology of the proposed newer mechanical ABS comprises of two units, namely, the braking unit and wheel lock prevention unit. The braking unit actuates the wheel stopping as and when the driver applies the brake, whereas the wheel lock prevention unit initiates wheel release to prevent locking and subsequent slip/skidding. The brake pedal with master cylinder assembly and double-arm cylinder forms the braking unit, brake pad cylinder, movable brake pad, solenoid valve and dynamo forms the wheel lock prevention unit. The dynamo coupled with the rotor energises/de-energises the solenoid values to direct airflow for applying brake and release it, which makes the system less energy-dependent.

Findings

The braking unit aids in vehicle stops, by locking the disc with the brake pad actuated by a double-arm cylinder. The dynamo energises the solenoid valve to activate the brake pad cylinder piston for applying the brake on the disc. Instantaneously, on applying the brake the dynamo de-energises the solenoid to divert the pneumatic flow for retracting the brake pad thereby minimizing the braking torque. The baking torque reduction revives the wheel rotating and prevents slip/skidding.

Originality/value

Mechanical ABS preventing wheel lock by torque reduction principle is a novel method that has not been evolved so far. The system was designed with repair/replacement of the parts and subcomponents to support higher affordability on safety grounds.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2023

Dongdong Lin, Xiaoyu Yan, Binsan Chen, Na She, Yining Ding and Shichao Dong

This study aims to explore the impact of key parameters of brake pads on the dynamic characteristics of the braking system.

Abstract

Purpose

This study aims to explore the impact of key parameters of brake pads on the dynamic characteristics of the braking system.

Design/methodology/approach

This study conducted experimental research based on a friction testing machine with a slider-disc structure. The experiment studied the impact of key parameters of brake pads (rotation speed, pressure, mass, braking radius, etc.) and the braking environment (dry friction, wetness, sand, etc.) on the stability of the braking system. At the same time, a dynamic model of the brake pad braking system was established and compared with experimental results using the mathematical tool of autocorrelation coefficient.

Findings

The key parameters of brake pads have a significant impact on the dynamic characteristics of the braking system; under different conditions of brake pad mass, tribological parameters, brake pad radius and braking environment, the chaotic characteristics of the braking friction force signal show a trend of expansion or contraction, which can be suppressed by adjusting the key parameters of brake pads.

Originality/value

This study can provide a reference for optimizing the braking strategy and reducing noise and vibration in brake pad systems.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 December 2023

Indranil Banik, Arup Kumar Nandi and Bittagopal Mondal

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road…

Abstract

Purpose

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road conditions do not exhibit excessive variations. This will intend for an appropriate allocation of brake force distribution (BFD) to provide dynamic stability to the vehicle during braking.

Design/methodology/approach

Two techniques are presented (with and without wheel slip) to satisfy both brake stability and performance while accommodating variations in load sharing and road friction coefficient. Based on parametric optimization of the design variables of hydraulic brake using evolutionary algorithm, taking into account both the laden and unladen circumstances simultaneously, this research develops an improved model for computing and simulating the BFD applied to commercial and passenger vehicles.

Findings

The optimal parameter values defining the braking system have been identified, resulting in effective β = 0.695 which enhances the brake forces at respective axles. Nominal slip of 3.42% is achieved with maximum deceleration of 5.72 m/s2 maintaining directional stability during braking. The results obtained from both the methodologies are juxtaposed and assessed governing the vehicle stability in straight line motion to prevent wheel lock.

Originality/value

Optimization results establish the practicality, efficacy and applicability of the proposed approaches. The findings provide valuable insights for the design and optimization of hydraulic drum brake systems in modern automobiles, which can lead to safer and more efficient braking systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Article
Publication date: 15 November 2023

Xiaoxue Liu, Yuchen Liu, Youwei Zhang and Hanfei Guo

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the…

Abstract

Purpose

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the PEM is adopted to further transform it into a deterministic process to solve the vehicle’s problem of running at a non-uniform speed.

Design/methodology/approach

The multi-body vehicle model has 10 degrees of freedom and the track is regarded as a finite long beam supported by lumped sleepers and ballast blocks. They are connected via linear Hertz springs. The vertical track irregularity is a Gaussian stationary process in the space domain. It is transformed into a uniformly modulated nonstationary random process in the time domain with respect to the non-uniform vehicle speed. By solving the equation of motion of the coupled vehicle-track system with the pseudo-excitation method, the pseudo-response and consequently the power spectral density and the standard deviation of the structural response can be obtained.

Findings

Two kinds of vehicle braking programs are taken in the numerical example and some beneficial conclusions are drawn.

Originality/value

The pseudo-excitation method (PEM) was used to perform the random vibration analysis of a coupled non-uniform speed vehicle-track system. Transforming the track irregularity into a uniformly modulated nonstationary random process in time domain with respect to the non-uniform vehicle speed was undertaken. The pseudo-response of the coupled system is solved by applying the Newmark algorithm with constant space integral steps. The random vibration transfer mechanism of the coupled system is fully discussed.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 25 December 2023

James Kanyepe and Nyarai Kasambuwa

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication…

Abstract

Purpose

The purpose of this study is to investigate the influence of institutional dynamics on road accidents and whether this relationship is moderated by information and communication technology (ICT).

Design/methodology/approach

The study adopted a quantitative approach with 133 respondents. Research hypotheses were tested in AMOS version 21. In addition, moderated regression analysis was used to test the moderating role of ICT on the relationship between institutional dynamics and road accidents.

Findings

The results show that vehicle maintenance, policy enforcement, safety culture, driver training and driver management positively influence road accidents. Moreover, the study established that ICT moderates the relationship between institutional dynamics and road accidents.

Practical implications

The results of this study serve as a practical guideline for policymakers in the road haulage sector. Managers may gain insights on how to design effective interventions to reduce road accidents.

Originality/value

This research contributes to the existing body of knowledge by exploring previously unexplored moderating paths in the relationship between institutional dynamics and road accidents. By highlighting the moderating role of ICT, the study sheds new light on the institutional dynamics that influence road accidents in the context of road haulage companies.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 1
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 7 April 2022

Huanhuan Ma, Jingqin Su, Shuai Zhang and Sijia Zhang

The rapid growth of emerging market firms (EMFs) has been a topic of interest for the past two decades, especially in China. However, few studies have discussed how and why EMFs…

Abstract

Purpose

The rapid growth of emerging market firms (EMFs) has been a topic of interest for the past two decades, especially in China. However, few studies have discussed how and why EMFs can impel the upgrading of their capabilities to quickly win competitive advantages in the global market. In this context, the purpose of this paper is to unravel the implausible upgrading phenomenon from the perspective of technological proximity.

Design/methodology/approach

This paper adopts a single case study, specifically that of a leading Chinese e-bike firm, with a special focus on the dynamic nature of the capability upgrading process and underlying mechanisms.

Findings

The results show that taking advantage of technological proximity is an important way for EMFs to climb the ladder of capability upgrading. The stage-based process reveals how capability upgrading is achieved through elaborate actions related to technological proximity. Furthermore, this study finds three learning mechanisms behind the technological proximity, which enable firms to successfully upgrade to higher levels of capabilities. In particular, the trigger role played by contextual conditions in guiding firms' capability upgrading is highlighted and characterized.

Research limitations/implications

This study enriches traditional capability upgrading literature from a technological proximity perspective, especially the traditional static upgrading research related to EMFs. The authors also contribute to the conceptualization of technological proximity. However, the research setting is China's e-bike industry; therefore, the study's generalizability to other emerging markets and industries may be limited.

Practical implications

The results show that it is important to recognize the value of the transfer and sharing of technology between proximal industries for local governments. Also, appropriate policies should be developed to break down the technology barriers between these industries. Moreover, rather than catching up with the superior technologies of multinational corporations in advanced countries, focusing on products with high technological proximity in local or regional areas may be more helpful for EMFs' upgrading.

Originality/value

This paper investigates the capability upgrading process and mechanisms in EMFs, particularly with respect to the role played by technological proximity.

Details

International Journal of Emerging Markets, vol. 18 no. 12
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 10 of 233