Search results

1 – 10 of over 1000
Article
Publication date: 29 March 2019

Zhihang He, Wei Wang, Huaping Ruan, Yanzhang Yao, Xuelong Li, Dehua Zou, Yu Yan and Shaochun Jia

Overhead high-voltage transmission line (HVTL) inspection robots are used to inspect the transmission lines and/or maintain the infrastructures of a power transmission grid. One…

Abstract

Purpose

Overhead high-voltage transmission line (HVTL) inspection robots are used to inspect the transmission lines and/or maintain the infrastructures of a power transmission grid. One of the most serious problems is that the load on the front wheel is much larger than that on the back one when the robot travels along a sloping earth wire. Thus, ongoing operation of the inspection robot mainly depends on the front wheel motor’s ability. This paper aims to extend continuous operation time of the HVTL inspection robots.

Design/methodology/approach

By introducing a traction force model, the authors have established a dynamic model of the robot with slip. The total load is evenly distributed to both wheels. According to the traction force model, the desired wheel slip is calculated to achieve the goal of load balance. A wheel slip controller was designed based on second-order sliding-mode control methodology.

Findings

This controller accomplishes the control objective, such that the actual wheel slip tracks the desired wheel slip. A simulation and experiment verify the feasibility of the load balance control system. These results indicate that the loads on both wheels are generally equal.

Originality/value

By balancing the loads on both wheels, the inspection robot can travel along the earth wire longer, improving its efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 March 2010

Yanwen Huang, Qixin Cao and Chuntao Leng

This paper aims to propose a suitable motion control method for omni‐directional mobile robots (OMRs). In RoboCup competition, the robot moves in a dynamic and oppositional…

Abstract

Purpose

This paper aims to propose a suitable motion control method for omni‐directional mobile robots (OMRs). In RoboCup competition, the robot moves in a dynamic and oppositional environment, which occurs with high acceleration and deceleration motion frequently, especially for our OMR that slipping is almost inherently encountered in motion. Therefore, the purpose of this paper is to present one improved dynamical model with slip, and then to propose one suitable path‐tracking controller based on it, which gives more accurate control result.

Design/methodology/approach

A dynamic modeling method for OMRs based on the theory of vehicle dynamics is proposed. By analyzing the wheel contact friction forces both in the wheel hub rolling direction and in the roller rolling direction, an amendatory dynamics model is presented. This model is introduced into the computed‐torque‐like‐controller (CTLC) system to solve the path‐tracking problem.

Findings

An amendatory dynamics model with slip is analyzed and introduced into the CTLC system to solve the path tracking problem for OMR in this paper. The anti‐disturbance ability and the trajectory tracking effect of the proposed motion control method are proven through simulations and experiments.

Practical implications

The proposed path tracking control method based on one improved dynamic model with slip is applied successfully to achieve effective motion control for one four‐wheel OMR, which is suitable for any kind of OMR.

Originality/value

One amendatory dynamics model including slipping between the wheels and ground is presented. Based on the above‐slipping model, one CTLC is implemented to solve the path‐tracking problem for one four‐wheel OMR.

Details

Industrial Robot: An International Journal, vol. 37 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 July 2019

Youguo He, Chuandao Lu, Jie Shen and Chaochun Yuan

The purpose of this study is to improve vehicles’ brake stability, the problem of constraint control for an antilock braking system (ABS) with asymmetric slip ratio constraints is…

Abstract

Purpose

The purpose of this study is to improve vehicles’ brake stability, the problem of constraint control for an antilock braking system (ABS) with asymmetric slip ratio constraints is concerned. A nonlinear control method based on barrier Lyapunov function (BLF) is proposed not only to track the optimal slip ratio but also to guarantee no violation on slip ratio constraints.

Design/methodology/approach

A quarter vehicle braking model and Burckhardt’s tire model are considered. The asymmetric BLF is introduced into the controller for solving asymmetric slip ratio constraint problems.

Findings

The proposed controller can implement ABS zero steady-state error tracking of the optimal wheel slip ratio and make slip ratio constraints flexible for various runway surfaces and runway transitions. Simulation and experimental results show that the control scheme can guarantee no violation on slip ratio constraints and avoid self-locking.

Originality/value

The slip rate equation with uncertainties is established, and BLF is introduced into the design process of the constrained controller to realize the slip rate constrained control.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 December 2023

Indranil Banik, Arup Kumar Nandi and Bittagopal Mondal

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road…

Abstract

Purpose

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road conditions do not exhibit excessive variations. This will intend for an appropriate allocation of brake force distribution (BFD) to provide dynamic stability to the vehicle during braking.

Design/methodology/approach

Two techniques are presented (with and without wheel slip) to satisfy both brake stability and performance while accommodating variations in load sharing and road friction coefficient. Based on parametric optimization of the design variables of hydraulic brake using evolutionary algorithm, taking into account both the laden and unladen circumstances simultaneously, this research develops an improved model for computing and simulating the BFD applied to commercial and passenger vehicles.

Findings

The optimal parameter values defining the braking system have been identified, resulting in effective β = 0.695 which enhances the brake forces at respective axles. Nominal slip of 3.42% is achieved with maximum deceleration of 5.72 m/s2 maintaining directional stability during braking. The results obtained from both the methodologies are juxtaposed and assessed governing the vehicle stability in straight line motion to prevent wheel lock.

Originality/value

Optimization results establish the practicality, efficacy and applicability of the proposed approaches. The findings provide valuable insights for the design and optimization of hydraulic drum brake systems in modern automobiles, which can lead to safer and more efficient braking systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 17 May 2022

Osman Nuri Şahin and Mehmet İsmet Can Dede

Mobile robots may perform very critical tasks under difficult operating conditions. Faults encountered during their tasks may cause the task to be interrupted or failed…

Abstract

Purpose

Mobile robots may perform very critical tasks under difficult operating conditions. Faults encountered during their tasks may cause the task to be interrupted or failed completely. In the active fault tolerant control methods, it is very important not only to detect the faults that occur in the robot, but also to isolate these faults to develop a fault recovery strategy that is suitable for that specific type of fault. This study aims to develop a model-based fault detection and isolation method for wheel slippage and motor performance degradation that may occur in wheeled mobile robots.

Design/methodology/approach

In the proposed method, wheel speeds can be estimated via the dynamic model of the mobile robot, which includes a friction model between the wheel and the ground. Four residual signals are obtained from the differences between the estimated states and the measured states of the mobile robot. Mobile robot’s faults are detected by using these signals. Also, two different residual signals are generated from the calculation of the traction forces with two different procedures. These six residual signals are then used to isolate possible wheel slippage and performance degradation in a motor.

Findings

The proposed method for diagnosing wheel slip and performance degradation in motors are tested by moving the robot in various directions. According to the data obtained from the test results, a logic table is created to isolate these two faults from each other. Thanks to the created logic table, slippage in any wheel and performance degradation in any motor can be detected and isolated.

Originality/value

Two different recovery strategies are needed to recover temporary wheel slippage and permanent motor faults. Therefore, it is important to isolate these two faults that create similar symptoms in robot’s general movement. Thanks to the method proposed in this study, it is not only possible to isolate the slipping wheel with respect to the non-slipping wheels or to isolate the faulty motor from the non-faulty ones, but also to isolate these two different fault types from each other.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 February 2022

Changlong Ye, Yingxin Sun, Suyang Yu, Jian Ding and Chunying Jiang

The mechanical properties between wheel and ground will affect the motion performance of wheeled omnidirectional mobile robot (OMR). MY3 wheel is an omnidirectional wheel. This…

Abstract

Purpose

The mechanical properties between wheel and ground will affect the motion performance of wheeled omnidirectional mobile robot (OMR). MY3 wheel is an omnidirectional wheel. This paper aims to analyze the contact mechanical characteristics between MY3 wheel and ground to improve the motion accuracy of an omnidirectional mobile platform with MY3 wheel (MY3-OMR).

Design/methodology/approach

This method takes MY3 wheel as the research objective. The normal and tangential contact mechanics model and rolling contact mechanics model of MY3 wheel are established by analyzing the structure of MY3 wheel, and thereby, the slip ratio of MY3 wheel in the process of motion is calculated. The kinematics model of MY3-OMR is optimized by taking the slip ratio as the optimization parameter that aims to improve motion accuracy of MY3-OMR.

Findings

The correctness of the mechanical analysis and the feasibility of the method are verified by the MY3-OMR prototype. Let MY3-OMR move along the set circular trajectory and square trajectory, and the error between the motion trajectory before and after optimization and the standard trajectory is obtained. It illustrates that the error in the square trajectory is reduced by 1.5%, and the circular trajectory error is reduced by 2%; therefore, the method is effective.

Originality/value

A method based on contact mechanics is proposed and verified. Through the establishment of wheel-ground contact mechanics model to optimize MY3-OMR kinematics model, and thereby, the motion accuracy of MY3-OMR is improved, which lays a foundation for MY3-OMR engineering application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 October 2017

He Xu, Yan Xu, Peiyuan Wang, Hongpeng Yu, Ozoemena Anthony Ani and X.Z. Gao

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning…

194

Abstract

Purpose

The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy.

Design/methodology/approach

First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model.

Findings

In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results.

Originality/value

This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 October 2021

Liang Su, Zhenpo Wang and Chao Chen

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving…

Abstract

Purpose

The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs.

Design/methodology/approach

The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm.

Findings

The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively.

Originality/value

In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.

Article
Publication date: 4 August 2020

Rameez Khan, Fahad Mumtaz Malik, Abid Raza and Naveed Mazhar

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control…

Abstract

Purpose

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field.

Design/methodology/approach

Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area.

Findings

Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots.

Originality/value

An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000