Search results

1 – 8 of 8
Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 August 2024

Seyed Morteza Hosseini, Shahin Heidari, Shady Attia, Julian Wang and Georgios Triantafyllidis

This study aims to develop a methodology that extracts an architectural concept from a biological analogy that integrates forms and kinetic behavior to identify whether complex…

Abstract

Purpose

This study aims to develop a methodology that extracts an architectural concept from a biological analogy that integrates forms and kinetic behavior to identify whether complex forms work better or simple forms with proper kinetic behavior for improving visual comfort and daylight performance.

Design/methodology/approach

The research employs a transdisciplinary approach using several methods consisting of a biomimetic functional-morphological approach, kinetic design strategy, case study comparison using algorithmic workflow and parametric simulation and inverse design, to develop an interactive kinetic façade with optimized daylight performance.

Findings

A key development is the introduction of a periodic interactive region (PIR), which draws inspiration from the butterfly wings' nanostructure. These findings challenge conventional perspectives on façade complexity, highlighting the efficacy of simpler shapes paired with appropriate kinetic behavior for improving visual comfort. The results show the façade with a simpler “Bookshelf” shape integrated with a tapered shape of the periodic interactive region, outperforms its more complex counterpart (Hyperbolic Paraboloid component) in terms of daylight performance and glare control, especially in southern orientations, ensuring occupant visual comfort by keeping cases in the imperceptible range while also delivering sufficient average spatial Daylight Autonomy of 89.07%, Useful Daylight Illuminance of 94.53% and Exceeded Useful Daylight Illuminance of 5.11%.

Originality/value

The investigation of kinetic façade studies reveals that precedent literature mostly focused on engineering and building physics aspects, leaving the architectural aspect underutilized during the development phase. Recent studies applied a biomimetic approach for involving the architectural elements besides the other aspects. While the biomimetic method has proven effective in meeting occupants' visual comfort needs, its emphasis has been primarily on the complex form which is difficult to apply within the kinetic façade development. This study can address two gaps: (1) the lack of an architectural aspect in the kinetic façade design specifically in the development of conceptual form and kinetic behavior dimensions and (2) exchanging the superficial biomimetic considerations with an in-depth investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 August 2024

Yukei Oyama, Mohsen Rostami and Joon Chung

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and…

Abstract

Purpose

With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft.

Design/methodology/approach

An unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft.

Findings

Upon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations.

Originality/value

The box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 June 2024

Partha Protim Das and Shankar Chakraborty

Grey relational analysis (GRA) has already proved itself as an efficient tool for multi-objective optimization of many of the machining processes. In GRA, the distinguishing…

Abstract

Purpose

Grey relational analysis (GRA) has already proved itself as an efficient tool for multi-objective optimization of many of the machining processes. In GRA, the distinguishing coefficient (ξ) plays an important role in identifying the optimal parametric combinations of the machining processes and almost all the past researchers have considered its value as 0.5. In this paper, based on past experimental data, the application of GRA is extended to dynamic GRA (DGRA) to optimize two electrochemical machining (ECM) processes.

Design/methodology/approach

Instead of a static distinguishing coefficient, this paper considers dynamic distinguishing coefficient for each of the responses for both the ECM processes under consideration. Based on these coefficients, the application of DGRA leads to determination of the dynamic grey relational grade (DGRG) and grey relational standard deviation (GRSD), helping in initial ranking of the alternative experimental trials. Considering the ranks obtained by DGRG and GRSD, a composite rank in terms of rank product score is obtained, aiding in final rankings of the experimental trials for both the ECM processes.

Findings

In the first example, the maximum material removal rate (MRR) would be obtained at an optimal combination of ECM parameters as electrolyte concentration = 2 mol/l, voltage = 16V and current = 4A, while another parametric intermix as electrolyte concentration = 2 mol/l, voltage = 14V and current = 2A would result in minimum radial overcut and delamination. For the second example, an optimal combination of ECM parameters as electrode temperature = 30°C, voltage = 12V, duty cycle = 90% and electrolyte concentration = 15 g/l would simultaneously maximize MRR and minimize surface roughness and conicity.

Originality/value

In this paper, two ECM operations are optimized using a newly developed but yet to be popular multi-objective optimization tool in the form of the DGRA technique. For both the examples, the derived rankings of the ECM experiments exactly match with those obtained by the past researchers. Thus, DGRA can be effectively adopted to solve parametric optimization problems in any of the machining processes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 June 2024

Metin Uzun

This study aims to simultaneously and stochastically maximize autonomous flight performance of a variable wing incidence angle having an unmanned aerial vehicle (UAV) and its…

Abstract

Purpose

This study aims to simultaneously and stochastically maximize autonomous flight performance of a variable wing incidence angle having an unmanned aerial vehicle (UAV) and its flight control system (FCS) design.

Design/methodology/approach

A small UAV is produced in Iskenderun Technical University Drone Laboratory. Its wing incidence angle is able to change before UAV flight. FCS parameters and wing incidence angle are simultaneously and stochastically designed to maximize autonomous flight performance using an optimization method named simultaneous perturbation stochastic approximation. Obtained results are also benefitted during UAV flight simulations.

Findings

Applying simultaneous and stochastic design approach for a UAV having passively morphing wing incidence angle and its flight control system, autonomous flight performance is maximized.

Research limitations/implications

Permission of the Directorate General of Civil Aviation in Turkish Republic is necessary for real-time flights.

Practical implications

Simultaneous stochastic variable wing incidence angle having UAV and its flight control system design approach is so useful for maximizing UAV autonomous flight performance.

Social implications

Simultaneous stochastic variable wing incidence angle having UAV and its flight control system design methodology succeeds confidence, excellent autonomous performance index and practical service interests of UAV users.

Originality/value

Creating an innovative method to recover autonomous flight performance of a UAV and generating an innovative procedure carrying out simultaneous stochastic variable wing incidence angle having UAV and its flight control system design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 8 of 8