Search results

1 – 8 of 8
Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 19 December 2023

Rouhollah Ostadhossein and Siamak Hoseinzadeh

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the…

Abstract

Purpose

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the efficiency of finite difference and finite volume methods in solving the highly nonlinear form of Pennes’ bioheat equation.

Design/methodology/approach

One-dimensional linear and nonlinear forms of Pennes’ bioheat equation with uniform grids were used to study the behavior of human skin. The specific heat capacity, thermal conductivity and blood perfusion rate were assumed to be linear functions of temperature. The nonlinear form of the bioheat equation was solved using the Newton linearization method for the finite difference method and the Picard linearization method for the finite volume method. The algorithms were validated by comparing the results from both methods.

Findings

The study demonstrated the capacity of both finite difference and finite volume methods to solve the one-dimensional and highly nonlinear form of the bioheat equation. The investigation of human skin’s thermal behavior indicated that thermal conductivity and blood perfusion rate are the most effective properties in mitigating a surface temperature drop, while specific heat capacity has a lesser impact and can be considered constant.

Originality/value

This paper modeled the transient heat distribution within human skin in a one-dimensional manner, using temperate-dependent physical properties. The nonlinear equation was solved with two numerical methods to ensure the validity of the results, despite the complexity of the formulation. The findings of this study can help in understanding the behavior of human skin under extreme temperature conditions, which can be beneficial in various fields, including medical and engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2023

Norman Haussmann, Steven Stroka, Benedikt Schmuelling and Markus Clemens

High resolution simulations of body-internal electric field strengths induced by magneto-quasistatic fields from wireless power transfer systems are computationally expensive. The…

Abstract

Purpose

High resolution simulations of body-internal electric field strengths induced by magneto-quasistatic fields from wireless power transfer systems are computationally expensive. The exposure simulation can be split into two separate simulation steps allowing the calculation of the magnetic flux density distribution, which serves as input into the second simulation step to calculate the body-internal electric fields. In this work, the magnetic flux density is interpolated from in situ measurements in combination with the scalar-potential finite difference scheme to calculate the resulting body-internal field. These calculations are supposed to take less than 5 s to achieve a near real-time visualization of these fields on mobile devices. The purpose of this work is to present an implementation of the simulation on graphics processing units (GPUs), allowing for the calculation of the body-internal field strength in about 3 s.

Design/methodology/approach

This work uses the co-simulation scalar-potential finite difference scheme to determine the body-internal electric field strength of human models with a voxel resolution of 2 × 2 × 2 mm3. The scheme is implemented on GPUs. This simulation scheme requires the magnetic flux density distribution as input, determined from radial basis functions.

Findings

Using NVIDIA A100 GPUs, the body-internal electric field strength with high-resolution models and 8.9 million degrees of freedom can be determined in about 2.3 s.

Originality/value

This paper describes in detail the used scheme and its implementation to make use of the computational performance of modern GPUs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 August 2023

Biao Liu, Qiao Wang, Y.T. Feng, Zongliang Zhang, Quanshui Huang, Wenxiang Tian and Wei Zhou

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method…

Abstract

Purpose

3D steady heat conduction analysis considering heat source is conducted on the fundamental of the fast multipole method (FMM)-accelerated line integration boundary element method (LIBEM).

Design/methodology/approach

Due to considering the heat source, domain integral is generated in the traditional heat conduction boundary integral equation (BIE), which will counteract the well-known merit of the BEM, namely, boundary-only discretization. To avoid volume discretization, the enhanced BEM, the LIBEM with dimension reduction property is introduced to transfer the domain integral into line integrals. Besides, owing to the unsatisfactory performance of the LIBEM when it comes to large-scale structures requiring massive computation, the FMM-accelerated LIBEM (FM-LIBEM) is proposed to improve the computation efficiency further.

Findings

Assuming N and M are the numbers of nodes and integral lines, respectively, the FM-LIBEM can reduce the time complexity from O(NM) to about O(N+ M), and a full discussion and verification of the advantage are done based on numerical examples under heat conduction.

Originality/value

(1) The LIBEM is applied to 3D heat conduction analysis with heat source. (2) The domain integrals can be transformed into boundary integrals with straight line integrals by the LIM. (3) A FM-LIBEM is proposed and can reduce the time complexity from O(NM) to O(N+ M). (4) The FM-LIBEM with high computational efficiency is exerted to solve 3D heat conduction analysis with heat source in massive computation successfully.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 February 2023

Sharad Asthana and Rachana Kalelkar

This paper's purpose was to examine the impact of geomagnetic activity (GMA) on the timing and valuation of earnings information disclosed by firms every quarter.

Abstract

Purpose

This paper's purpose was to examine the impact of geomagnetic activity (GMA) on the timing and valuation of earnings information disclosed by firms every quarter.

Design/methodology/approach

The authors start the analyses with a sample of 112,669 client firms from 1989 to 2018. To analyze the impact of GMA on the earnings response coefficient (ERC), the authors use the three-day cumulative abnormal returns and cumulative abnormal returns for the extended post-earnings announcement window [2, 75] as the dependent variables. The authors interact unexpected earnings (UE) with the C9 Index, an index commonly used to measure GMA and study how GMA affects the pricing of new public information. To examine the effect of GMA on the timing of disclosure of earnings news, the authors regress a variant of the GMA index on the propensity to disclose bad earnings news.

Findings

The authors find significantly lower earnings response coefficients during periods of high GMA. This effect is permanent and stock prices do not correctly incorporate the implications of earnings information over time. The authors also show that managerial behavior is affected by GMA as well and the managers are more (less) likely to release bad (good) news during periods of higher activity. Finally, the authors also find that in situations where stakeholders are likely to rely on modern technology that depends minimally on humans, the adverse impact of GMA on the pricing of earnings information is mitigated.

Originality/value

The literature on the effect of GMA on the capital market is very limited and focuses primarily on stock returns, while the behavioral finance literature focuses on circumstances like weather, temperature and sporting outcome to study how the investors' mood affects their capital market behavior. The authors add to both the literature by investigating how GMA influences investors' and managers' behaviors in the capital market.

Details

Asian Review of Accounting, vol. 31 no. 3
Type: Research Article
ISSN: 1321-7348

Keywords

Article
Publication date: 18 November 2022

Norman Haussmann, Robin Mease, Martin Zang, Steven Stroka, Hendrik Hensel and Markus Clemens

Magneto-quasi-static fields emanated by inductive charging systems can be potentially harmful to the human body. Recent projects, such as TALAKO and MILAS, use the technique of…

Abstract

Purpose

Magneto-quasi-static fields emanated by inductive charging systems can be potentially harmful to the human body. Recent projects, such as TALAKO and MILAS, use the technique of wireless power transfer (WPT) to charge batteries of electrically powered vehicles. To ensure the safety of passengers, the exposing magnetic flux density needs to be measured in situ and compared to reference limit values. However, in the design phase of these systems, numerical simulations of the emanated magnetic flux density are inevitable. This study aims to present a tool along with a workflow, based on the Scaled-Frequency Finite Difference Time-Domain and Co-Simulation Scalar Potential Finite Difference schemes, to determine body-internal magnetic flux densities, electric field strengths and induced voltages into cardiac pacemakers. The simulations should be time efficient, with lower computational costs and minimal human workload.

Design/methodology/approach

The numerical assessment of the human exposure to magneto-quasi-static fields is computationally expensive, especially when considering high-resolution discretization models of vehicles and WPT systems. Incorporating human body models into the simulation further enhances the number of mesh cells by multiple millions. Hence, the number of simulations including all components and human models needs to be limited while efficient numerical schemes need to be applied.

Findings

This work presents and compares four exposure scenarios using the presented numerical methods. By efficiently combining numerical methods, the simulation time can be reduced by a factor of 3.5 and the required storage space by almost a factor of 4.

Originality/value

This work presents and discusses an efficient way to determine the exposure of human beings in the vicinity of wireless power transfer systems that saves computer simulation resources and human workload.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 May 2022

Hanliang Fu, Hong Zhu, Pengdong Xue, Xi Hu, Xiaotong Guo and Bingsheng Liu

This study applied eye-tracking techniques and questionnaires within the framework of the Stimulus-Organism-Response Model (SOR) and Technology Acceptance Model (TAM), to…

Abstract

Purpose

This study applied eye-tracking techniques and questionnaires within the framework of the Stimulus-Organism-Response Model (SOR) and Technology Acceptance Model (TAM), to investigate the influencing factors of the public acceptance of 5G base stations.

Design/methodology/approach

This study used a combination of eye-tracking experiments and questionnaires. The data were analyzed using partial least squares structural equation modeling (PLS-SEM).

Findings

(1) The Technology Acceptance Model (TAM) could be used to explain the effects on public acceptance of 5G base stations in the context of the COVID-19 pandemic. The public's perceived usefulness and ease of use of 5G base stations positively affects public acceptance of 5G base stations. (2) The public's perceived risk of 5G base stations has a negative influence on the public acceptance of 5G base stations. (3) The public's visual attention to the different valence information about 5G base stations positively impacts the perceived ease of use while having negative impacts on perceived risk. (4) Visual attention to various valence information of 5G base stations can indirectly influence public acceptance through the perceived risk.

Originality/value

Applying the SOR and TAM to data obtained from eye-tracking experiments and questionnaires, this study analyzed the factors and mechanisms influencing public acceptance of 5G base stations in the context of the COVID-19 pandemic.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Access

Year

Last 12 months (8)

Content type

Article (8)
1 – 8 of 8