Search results

1 – 10 of over 9000
Article
Publication date: 11 June 2019

He-Nan Bu, Hong-Gen Zhou, Zhu-Wen Yan and Dian-Hua Zhang

In the process of cold rolled strip, there is tight coupling between flatness control and gauge control. The variation of the roll gap caused by the change of bending force will…

Abstract

Purpose

In the process of cold rolled strip, there is tight coupling between flatness control and gauge control. The variation of the roll gap caused by the change of bending force will lead to the change of rolling force. Furthermore, it can cause a deep impact on the control accuracy of strip exit thickness and exit crown. The purpose of this paper is to improve the accuracy of the bending force preset value for cold rolled strip.

Design/methodology/approach

In this paper, the bending force preset control strategy with considering of rolling force was proposed for the first time and the preset objective function of bending force was established on the basis of the two-objective optimization of bending force and rolling force. Meanwhile, the multi-objective intelligent algorithm – INSGA-II – was used to solve the objective function.

Findings

The proposed bending force multi-objective preset model has been tested in a 1,450 mm tandem cold rolling line. The analyzed results of field data show that the deviations of strip exit thickness and exit crown are reduced effectively by using the improved model, and at the same time, more reasonable bending force preset values are obtained, which can enhance the accuracy of flatness preset control.

Originality/value

A preset model of bending force with considering flatness and gauge is proposed in this paper and the multi-objective function of bending force preset is established on the basis of the two-objective optimization of bending force and rolling force. The value lies in proposing a new decoupling method of rolling force and bending force.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1961

J.H. Argyris and S. Kelsey

In the two short sections which close Chapter VII, an improved ring programme is developed which allows i.a. for the application of externally applied moments on the ring vertices…

Abstract

In the two short sections which close Chapter VII, an improved ring programme is developed which allows i.a. for the application of externally applied moments on the ring vertices and a preliminary and tentative extension of the analysis takes into account the bending stiffness of some of the flanges. The final chapter returns to the subject of the uniform, circular section fuselage and develops the theory for the polygonized cross‐section in analytical form. Standard expressions are given for the elements of the D,, matrix and application of the analysis to a simple example suggests that the effect of the polygonization on the accuracy of the stress distribution is insignificant.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1954

E.G. Broadbent

IN Part I wc saw how structural flexibility could introduce aerodynamic forces which might eventually lead to instability, or to the complete nullification of a desired…

Abstract

IN Part I wc saw how structural flexibility could introduce aerodynamic forces which might eventually lead to instability, or to the complete nullification of a desired aerodynamic effect. The phenomenon of flutter presents another problem in stability, but in this case an oscillatory instability is threatened. It must be realized at the outset that flutter is no mere resonance phenomenon such as the bad vibrations a motor‐car may exhibit at a particular engine speed. Flutter is a vibration in which energy is extracted from the airstrcam to help build up the amplitude, and a catastrophic failure can easily occur within a second of the start of the flutter.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1959

J.H. Argyris and S. Kelsey

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the structural…

Abstract

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the structural analysis of stressed skin fuselages for application in conjunction with the digital computer. The theory is a development of the matrix force method which permits a close integration of the analysis and the programming for a computer operating with a matrix interpretive scheme. The structural geometry covered by the analysis is sufficiently arbitrary to include most cases encountered in practice, and allows for non‐conical taper, double‐cell cross‐sections and doubly connected rings. An attempt has been made to produce a highly standardized procedure requiring as input information only the simplest geometrical and elastic data. An essential feature is the use of the elimination and modification technique subsequent to the main analysis of the regularized structure in which all cutouts have been filled in. Current Summary A critical historical appraisal of previous work in the Western World on fuselage analysis is given in the present issue together with an outline of the ideas underlying the new theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 13 September 2022

Mohamed Nabil Houhou, Tamir Amari and Abderahim Belounar

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on…

135

Abstract

Purpose

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on the additional single pile responses in terms of bending moment, lateral deflection, axial force, shaft resistance and pile settlement. Subsequently, a series of parametric studies were carried out to better understand the responses of single piles induced by tunneling. To give further understanding regarding the pile groups, a 2 × 2 pile group with two different pile head conditions, namely, free and capped, was considered.

Design/methodology/approach

Using the PLAXIS three-dimensional (3D) software, a full 3D numerical modeling is performed to investigate the effects of ground movements caused by tunneling on adjacent pile foundations. The numerical model was validated using centrifuge test data found in the literature. The relevance of the 3D model is also judged by comparison with the 2D plane strain model using the PLAXIS 2D code.

Findings

The numerical test results reveal that tunneling induces significant displacements and internal forces in nearby piles. The magnitude and distribution of internal forces depend mainly on the position of the pile toe relative to the tunnel depth and the distance between the pile and the vertical axis of the tunnel. As the volume loss increases from 1% to 3%, the apparent loss of pile capacity increases from 11% to 20%. By increasing the pile length from 0.5 to 1.5 times, the tunnel depth, the maximum pile settlement and lateral deflection decrease by about 63% and 18%, respectively. On the other hand, the maximum bending moment and axial load increase by about 7 and 13 times, respectively. When the pile is located at a distance of 2.5 times the tunnel diameter (Dt), the additional pile responses become insignificant. It was found that an increase in tunnel depth from 1.5Dt to 2.5Dt (with a pile length of 3Dt) increases the maximum lateral deflection by about 420%. Regarding the interaction between tunneling and group of piles, a positive group effect was observed with a significant reduction of the internal forces in rear piles. The maximum bending moment of the front piles was found to be higher than that of the rear piles by about 47%.

Originality/value

Soil is a complex material that shows differently in primary loading, unloading and reloading with stress-dependent stiffness. This general behavior was not possibly being accounted for in simple elastic perfectly plastic Mohr–Coulomb model which is often used to predict the behavior of soils. Thus, in the present study, the more advanced hardening soil model with small-strain stiffness (HSsmall) is used to model the non-linear stress–strain soil behavior. Moreover, unlike previous studies THAT are usually based on the assumption that the soil is homogeneous and using numerical methods by decoupled loadings under plane strain conditions; in this study, the pile responses have been exhaustively investigated in a two-layered soil system using a fully coupled 3D numerical analysis that takes into account the real interactions between tunneling and pile foundations. The paper presents a distinctive set of findings and insights that provide valuable guidance for the design and construction of shield tunnels passing through pile foundations.

Article
Publication date: 12 March 2018

Zhanshe Guo, Zhaojun Guo, Xiangdang Liang and Shen Liu

Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate…

Abstract

Purpose

Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate biomechanical properties of the bone with a fixation device, including the static force and the fatigue characters.

Design/methodology/approach

In this paper, the device is mainly composed of three parts: pull-pressure transmission system, bending force applying system and torsion applying system, which can successfully simulate the pre-introduced pull-pressure force, bending force and torsion force, respectively. To prove the feasibility of the design, theoretical analysis is used. It is concluded from the simulated result that this scheme of design can successfully satisfy the request of the evaluation.

Findings

Finally, on the basis of the force sensor calibration, the static force experiment and fatigue experiment are carried out using the tibia of the sheep as the specimen. It is concluded from the result that the relationship between the micro displacement and the applied axial force is nearly linear. Under the condition of 1 Hz in frequency, 500 N in loading force and 18,000 reciprocating cycles, the bone fixator can still be in good condition, which proves the feasibility of the design.

Originality/value

Biomechanical properties of bones and fixators are studied by researchers. However, few simulate a real force environment and combine forces in different directions. So a novel system is designed and fabricated to evaluate the biomechanical properties of the bones and fixators. Results of the experiments show that this new system is reliable and stable, which can support the biomechanical study and clinical treatment.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 February 2022

Rui Bai, Rongjie Kang, Kun Shang, Chenghao Yang, Zhao Tang, Ruiqin Wang and Jian S. Dai

To identify the dexterity of spacesuit gloves, they need to undergo bending tests in the development process. The ideal way is to place a humanoid robotic hand into the spacesuit…

Abstract

Purpose

To identify the dexterity of spacesuit gloves, they need to undergo bending tests in the development process. The ideal way is to place a humanoid robotic hand into the spacesuit glove, mimicking the motions of a human hand and measuring the bending angle/force of the spacesuit glove. However, traditional robotic hands are too large to enter the narrow inner space of the spacesuit glove and perform measurements. This paper aims to design a humanoid robot hand that can wear spacesuit gloves and perform measurements.

Design/methodology/approach

The proposed humanoid robotic hand is composed of five modular fingers and a parallel wrist driven by electrical linear motors. The fingers and wrist can be delivered into the spacesuit glove separately and then assembled inside. A mathematical model of the robotic hand is formulated by using the geometric constraints and principle of virtual work to analyze the kinematics and statics of the robotic hand. This model allows for estimating the bending angle and output force/torque of the robotic hand through the displacement and force of the linear motors.

Findings

A prototype of the robotic hand, as well as its testing benches, was constructed to validate the presented methods. The experimental results show that the whole robotic hand can be transported to and assembled in a spacesuit glove to measure the motion characteristics of the glove.

Originality/value

The proposed humanoid robotic hand provides a new method for wearing and measuring the spacesuit glove. It can also be used to other gloves for special protective suits that have highly restricted internal space.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 April 2014

Weiwei Zhang, Xianlong Jin and Zhihao Yang

The great magnitude differences between the integral tunnel and its structure details make it impossible to numerically model and analyze the global and local seismic behavior of…

Abstract

Purpose

The great magnitude differences between the integral tunnel and its structure details make it impossible to numerically model and analyze the global and local seismic behavior of large-scale shield tunnels using a unified spatial scale, even with the help of supercomputers. The paper aims to present a combined equivalent & multi-scale simulation method, by which the tunnel's major mechanical properties under seismic loads can be represented by the equivalent model, and the seismic responses of the interested details can be studied efficiently by the coupled multi-scale model.

Design/methodology/approach

The nominal orthotropic material constants of the equivalent tunnel model are inversely determined by fitting the modal characteristics of the equivalent model with the corresponding segmental lining model. The critical sections are selected by comprehensive analyzing of the integral compression/extension and bending loads in the equivalent lining under the seismic shaking and the coupled multi-scale model containing the details of interest is solved by the mixed time explicit integration algorithm.

Findings

The combined equivalent & multi-scale simulation method is an effective and efficient way for seismic analyses of large-scale tunnels. The response of each flexible joint is related to its polar location on the lining ring, and the mixed time integration method can speed-up the calculation process for hybrid FE model with great differences in element sizes.

Originality/value

The orthotropic equivalent assumption is, to the best of the authors’ knowledge, for the first time, used in the 3D simulation of the shield tunnel lining, representing the rigidity discrepancies caused by the structural property.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1998

Stepan V. Lomov

Proposes an algorithm for the computation of maximum needle penetration force; it introduces the direct dependence of penetration force on fabric structural parameters and warp…

Abstract

Proposes an algorithm for the computation of maximum needle penetration force; it introduces the direct dependence of penetration force on fabric structural parameters and warp and weft geometrical and mechanical properties. Uses the approach to the simulation of local deformation of woven material which accounts for the thread resistance to crimp change and friction forces when the thread is shifted from its original position in the fabric structure as the result of its interaction with a needle. The resistance of threads to tension caused by a needle pushing them from their straight‐line paths is also accounted for. The resulting formulae give the dependence of needle penetration force for a plain‐woven fabric on the following parameters: needle diameter and surface angle; warp and weft spacing, dimensions, crimp height and bending rigidity; friction coefficients thread‐thread and thread‐needle. For a non‐plain‐woven fabric the linear dependence of penetration force on the fabric tightness is suggested. The comparison with the published and specially measured penetration force data proves the predictive ability of the model to be qualitatively accurate and quantitatively reasonable.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 9000