Search results

1 – 10 of 213
Article
Publication date: 5 July 2021

Tamir Amari and Mohamed Nabil Houhou

This paper aims to investigate single pile and pile group responses due to deep braced excavation-induced soil movement in soft clay overlying dense sand. The analysis focuses…

Abstract

Purpose

This paper aims to investigate single pile and pile group responses due to deep braced excavation-induced soil movement in soft clay overlying dense sand. The analysis focuses first on the response of vertical single pile in terms of induced bending moment, lateral deflection, induced axial force, skin resistance distribution and pile settlement. To better understand the single pile behaviour, a parametric study was carried out. To provide further insights about the response of pile group system, different pile group configurations were considered.

Design/methodology/approach

Using the explicit finite element code PLAXIS 3 D, a full three-dimensional numerical analysis is carried out to investigate pile responses when performing an adjacent deep braced excavation. The numerical model was validated based on the results of a centrifuge test. The relevance of the 3 D model is also judged by comparison with the 2 D plane strain model using the PLAXIS 2 D code.

Findings

The results obtained allowed a thorough understanding of the pile response and the soil–pile–structure interactions phenomenon. The findings reveal that the deep excavation may cause appreciable bending moments, lateral deflections and axial forces in nearby piles. The parametric study showed that the pile responses are strongly influenced by the excavation depth, relative pile location, sand density, excavation support system and pile length. It also showed that the response of a pile within a group depends on its location in relation to the other piles of the pile group, its distance from the retaining wall and the number of piles in the group.

Originality/value

Unlike previous studies which investigated the problem in homogeneous geological context (sand or clay), in this paper, the pile response was thoroughly studied in a multi-layered soil using 3 D numerical simulation. To take into account the small-strain nonlinear behaviour of the soil, the Hardening soil model with small-strain stiffness was used in this analysis. For a preliminary design, this numerical study can serve as a practical basis for similar projects.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 June 2024

Mohamed Hamed Zakaria and Ali Basha

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions…

Abstract

Purpose

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions, construction considerations, structural integrity, uncertainties in design parameters and construction and monitoring costs. Accordingly, this paper is to provide a detailed literature review on the design criteria of CPWs, specifically in cohesionless soil. This study aims to present a comprehensive overview of the current state of knowledge in this area.

Design/methodology/approach

The paper uses a literature review approach to gather information on the design criteria of CPWs in cohesionless soil. It covers various aspects such as excavation support systems (ESSs), deformation behavior, design criteria, lateral earth pressure calculation theories, load distribution methods and conventional design approaches.

Findings

The review identifies and discusses common challenges associated with the design of CPWs in cohesionless soil. It highlights the uncertainties in determining load distribution and the potential for excessive wall deformations. The paper presents various approaches and methodologies proposed by researchers to address these challenges.

Originality/value

The paper contributes to the field of geotechnical engineering by providing a valuable resource for geotechnical engineers and researchers involved in the design and analysis of CPWs in cohesionless soil. It offers insights into the design criteria, challenges and potential solutions specific to CPWs in cohesionless soil, filling a gap in the existing knowledge base. The paper draws attention to the limitations of existing analytical methods that neglect the serviceability limit state and assume rigid plastic soil behavior, highlighting the need for improved design approaches in this context.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2022

Mohamed Nabil Houhou, Tamir Amari and Abderahim Belounar

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on…

146

Abstract

Purpose

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on the additional single pile responses in terms of bending moment, lateral deflection, axial force, shaft resistance and pile settlement. Subsequently, a series of parametric studies were carried out to better understand the responses of single piles induced by tunneling. To give further understanding regarding the pile groups, a 2 × 2 pile group with two different pile head conditions, namely, free and capped, was considered.

Design/methodology/approach

Using the PLAXIS three-dimensional (3D) software, a full 3D numerical modeling is performed to investigate the effects of ground movements caused by tunneling on adjacent pile foundations. The numerical model was validated using centrifuge test data found in the literature. The relevance of the 3D model is also judged by comparison with the 2D plane strain model using the PLAXIS 2D code.

Findings

The numerical test results reveal that tunneling induces significant displacements and internal forces in nearby piles. The magnitude and distribution of internal forces depend mainly on the position of the pile toe relative to the tunnel depth and the distance between the pile and the vertical axis of the tunnel. As the volume loss increases from 1% to 3%, the apparent loss of pile capacity increases from 11% to 20%. By increasing the pile length from 0.5 to 1.5 times, the tunnel depth, the maximum pile settlement and lateral deflection decrease by about 63% and 18%, respectively. On the other hand, the maximum bending moment and axial load increase by about 7 and 13 times, respectively. When the pile is located at a distance of 2.5 times the tunnel diameter (Dt), the additional pile responses become insignificant. It was found that an increase in tunnel depth from 1.5Dt to 2.5Dt (with a pile length of 3Dt) increases the maximum lateral deflection by about 420%. Regarding the interaction between tunneling and group of piles, a positive group effect was observed with a significant reduction of the internal forces in rear piles. The maximum bending moment of the front piles was found to be higher than that of the rear piles by about 47%.

Originality/value

Soil is a complex material that shows differently in primary loading, unloading and reloading with stress-dependent stiffness. This general behavior was not possibly being accounted for in simple elastic perfectly plastic Mohr–Coulomb model which is often used to predict the behavior of soils. Thus, in the present study, the more advanced hardening soil model with small-strain stiffness (HSsmall) is used to model the non-linear stress–strain soil behavior. Moreover, unlike previous studies THAT are usually based on the assumption that the soil is homogeneous and using numerical methods by decoupled loadings under plane strain conditions; in this study, the pile responses have been exhaustively investigated in a two-layered soil system using a fully coupled 3D numerical analysis that takes into account the real interactions between tunneling and pile foundations. The paper presents a distinctive set of findings and insights that provide valuable guidance for the design and construction of shield tunnels passing through pile foundations.

Article
Publication date: 10 February 2020

Hong-Wei Ying, Kang Cheng, Li-Sha Zhang, Chang-Yu Ou and Yong-Wen Yang

Deep excavation in soft clay often causes additional deformations to surroundings. Then, if deformations cannot be predicted reasonably, the adjacent buildings may be threatened…

Abstract

Purpose

Deep excavation in soft clay often causes additional deformations to surroundings. Then, if deformations cannot be predicted reasonably, the adjacent buildings may be threatened by the deep excavation. Based on the good field observations from ten deep excavations in Hangzhou, this paper aims to thoroughly investigate the characteristics of wall deflections and ground settlements induced by deep excavations.

Design/methodology/approach

On the basis of good field observation of ten deep excavations, the performances of excavations, supported by contiguous pile in Hangzhou, were studied, and also compared with other case histories.

Findings

The maximum wall deflections (dhm) rang mostly from 0.7 to 1.2 per cent He, where He is the final excavation depth, larger than those in Taipei and Shanghai. The observed maximum ground settlement in the Hangzhou cases generally ranges from 0.2 to 0.8 per cent He. Then, the settlement influence zone extends to a distance of 2.0-4.0 He from the excavation. The relatively large movements and influence zones in Hangzhou may be attributed to low stability numbers, large excavation widths and the creep effect. The excavation width is justified to have a significant influence on the wall deflection. Therefore, to establish a semi-empirical formula for predicting the maximum wall deflection, it is necessary to include the factor of excavation width.

Originality/value

The relevant literature concentrated on the characteristics of deep excavations supported by the contiguous pile wall in Hangzhou soft clay can rarely be found. Based on the ten deep excavations with good field observation in Hangzhou, the characteristics of wall deflection and ground settlements were comprehensively studied for the first time, which can provide some theoretical support for similar projects.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 December 2018

Toufiq Ouzandja and Mohamed Hadid

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil…

Abstract

Purpose

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu.

Design/methodology/approach

The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves.

Findings

Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear.

Originality/value

This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 January 2020

Paola Ginestra, Stefano Pandini and Elisabetta Ceretti

The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness

196

Abstract

Purpose

The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness, biological interactions and surface structure that can promote cell-cell and cell-matrix interactions though proper porosity, pore size and interconnectivity.

Design/methodology/approach

This case study was focused on the production of multi-layered hybrid scaffolds made of polycaprolactone and consisting in supporting grids obtained by Material Extrusion (ME) alternated with electrospun layers. An open source 3D printer was utilized, with a grain extrusion head that allows the production and distribution of strands on the plate according to the designed geometry. Square grid samples were observed under optical microscope showing a good interconnectivity and spatial distribution of the pores, while scanning electron microscope analysis was used to study the electrospun mats morphology.

Findings

A good adhesion between the ME and electrospinning layers was achieved by compression under specific thermomechanical conditions obtaining a hybrid three-dimensional scaffold. The mechanical performances of the scaffolds have been analyzed by compression tests, and the biological characterization was carried out by seeding two different cells phenotypes on each side of the substrates.

Originality/value

The structure of the multi-layered scaffolds demonstrated to play an important role in promoting cell attachment and proliferation in a 3D culture formation. It is expected that this design will improve the performances of osteochondral scaffolds with a strong influence on the required formation of an interface tissue and structure that need to be rebuilt.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 April 2023

Amina Zahafi, Mohamed Hadid and Raouf Bencharif

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a…

Abstract

Purpose

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a straightforward calculation of foundations’ vertical vibrations. A rigid circular foundation shape resting on a nonhomogeneous half-space subjected to a vertical time-harmonic excitation is considered.

Design/methodology/approach

A simple model representing the soil–foundation system consists of a single degree of freedom (SDOF) system incorporating a lumped mass linked to a frequency-independent spring and dashpot. Besides that, an additional fictitious mass is incorporated into the SDOF system. Several numerical methods and mathematical techniques are used to identify each SDOF’s parameter: (1) the vertical component of the static and dynamic foundation impedance function is calculated. This dynamic interaction problem is solved by using a formulation combining the boundary element method and the thin layer method, which allows the simulation of any complex nonhomogeneous half-space configuration. After, one determines the static stiffness’s expression of the circular foundation resting on a nonhomogeneous half-space. (2) The system’s parameters (dashpot coefficient and fictitious mass) are calculated at the resonance frequency; and (3) using a curve fitting technique, the general formulas of the frequency-independent dashpot coefficients and additional fictitious mass are established.

Findings

Comparisons with other results from a rigorous formulation were made to verify the developed model’s accuracy; these are exceptional cases of the more general problems that can be addressed (problems like shallow or embedded foundations of arbitrary shape, other vibration modes, etc.).

Originality/value

In this new LPM, the impedance functions will no longer be needed. The engineer only needs a limited number of input parameters (geometrical and mechanical characteristics of the foundation and the soil). Moreover, a simple calculator is required (i.e. we do not need any sophisticated software).

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 March 2016

Liang Zhang, Qiang Gao, Yin Liu and Hongwu Zhang

The purpose of this paper is to propose an efficient finite element formulation for nonlinear analysis of clustered tensegrity that consists of classical cables, clustered cables…

Abstract

Purpose

The purpose of this paper is to propose an efficient finite element formulation for nonlinear analysis of clustered tensegrity that consists of classical cables, clustered cables and bars.

Design/methodology/approach

The derivation of the finite element formulation is based on the co-rotational approach, which decomposes a geometrically nonlinear deformation into a large rigid body motion and a small-strain deformation. A tangent stiffness matrix of a clustered cable is proposed and the Newton-Raphson scheme is employed to solve the nonlinear equation.

Findings

The derived tangent stiffness matrix, including an additional stiffness terms that describes the slide effect of pulleys, can regress to the stiffness matrix of a classical cable, which is convenient for the implementation of finite element procedure. Two typical numerical examples show that the proposed formulation is accurate and requires less iteration than the force density method.

Originality/value

The co-rotational formulation of a clustered cable is originally proposed, although some mature methods, such as the TL, Force Density and Dynamic Relaxation method, have been applied to nonlinear analysis of clustered tensegrity. The proposed co-rotational formulation proved efficient.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1992

RICARDO DOBRY and AND TANG‐TAT NG

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using…

Abstract

A general overview is presented on applications of the discrete element method (DEM) to granular media. A literature survey is performed of static and dynamic simulations using random arrays of compliant particles, and forty‐two references published mostly in the last ten years are identified and categorized according to a number of relevant criteria. It is concluded that the interest in the use of the technique is rapidly increasing in the research and engineering community, with applications concentrated in soil mechanics, rock mechanics, grain flow and engineering problems. Additional studies and verifications of some numerical aspects of the DEM technique are suggested including parametric studies and comparisons. Program CONBAL‐2 (CONTACT + TRUBAL in 2D) developed by the authors based on TRUBAL created by Strack and Cundall, is described. CONBAL‐2 uses the complete Mindlin solution for the contact between two spheres and thus can be used for small strain and cyclic loading. The program is applied to study the cyclic response of uniform, medium dense to dense rounded quartz sand. Cyclic strain‐controlled loading at constant volume is applied to isotropically consolidated, random arrays of 531 spheres, using cyclic strains ranging from 10–4% to 10–1%. The calculated shear modulus, Gmax, constrained modulus, D, and Poisson's ratio at small strains are correlated with the confining pressure, the porosity of the array, and the coordination number. The calculated variations of secant modulus and damping ratio with cyclic strain compare favourably with the experimental results on sands compiled by Seed and Idriss. Finally, ‘pore water pressure buildup’ and cyclic stiffness degradation of the material with number of cycles is calculated at a cyclic strain of 10–1%, and the prediction is found to represent closely cyclic undrained experiments on sands. The existence of a threshold strain, yt ≈ 10–2%, found experimentally, is also predicted by the simulations.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 213