Search results

1 – 10 of over 25000
Article
Publication date: 14 November 2008

B.N. Rao and Rajib Chowdhury

To develop a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry.

1811

Abstract

Purpose

To develop a new computational tool for predicting failure probability of structural/mechanical systems subject to random loads, material properties, and geometry.

Design/methodology/approach

High dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is a very efficient formulation of the system response, if higher order variable correlations are weak and if the response function is dominantly of additive nature, allowing the physical model to be captured by the first few lower order terms. But, if multiplicative nature of the response function is dominant then all right hand side components of HDMR must be used to be able to obtain the best result. However, if HDMR requires all components, which means 2N number of components, to get a desired accuracy, making the method very expensive in practice, then factorized HDMR (FHDMR) can be used. The component functions of FHDMR are determined by using the component functions of HDMR. This paper presents the formulation of FHDMR approximation of a multivariate limit state/performance function, which is dominantly of multiplicative nature. Given that conventional methods for reliability analysis are very computationally demanding, when applied in conjunction with complex finite element models. This study aims to assess how accurately and efficiently HDMR/FHDMR based approximation techniques can capture complex model output uncertainty. As a part of this effort, the efficacy of HDMR, which is recently applied to reliability analysis, is also demonstrated. Response surface is constructed using moving least squares interpolation formula by including constant, first‐order and second‐order terms of HDMR and FHDMR. Once the response surface form is defined, the failure probability can be obtained by statistical simulation.

Findings

Results of five numerical examples involving structural/solid‐mechanics/geo‐technical engineering problems indicate that the failure probability obtained using FHDMR approximation for the limit state/performance function of dominantly multiplicative in nature, provides significant accuracy when compared with the conventional Monte Carlo method, while requiring fewer original model simulations.

Originality/value

This is the first time where application of FHDMR concepts is explored in the field of reliability and system safety. Present computational approach is valuable to the practical modeling and design community, where user often suffers from the curse of dimensionality.

Details

Engineering Computations, vol. 25 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 13 December 2013

Peter Arcidiacono, Patrick Bayer, Federico A. Bugni and Jonathan James

Many dynamic problems in economics are characterized by large state spaces which make both computing and estimating the model infeasible. We introduce a method for approximating…

Abstract

Many dynamic problems in economics are characterized by large state spaces which make both computing and estimating the model infeasible. We introduce a method for approximating the value function of high-dimensional dynamic models based on sieves and establish results for the (a) consistency, (b) rates of convergence, and (c) bounds on the error of approximation. We embed this method for approximating the solution to the dynamic problem within an estimation routine and prove that it provides consistent estimates of the modelik’s parameters. We provide Monte Carlo evidence that our method can successfully be used to approximate models that would otherwise be infeasible to compute, suggesting that these techniques may substantially broaden the class of models that can be solved and estimated.

Article
Publication date: 5 September 2023

Lucas Silva and Alfredo Gay Neto

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise…

Abstract

Purpose

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise, into idealized geometrical entities. As an engineering application, wheel-rail contact interactions are fundamental in the dynamic modeling of railway vehicles. Many approaches used to solve the contact problem require a continuous parametric description of the geometries involved. However, measured wheel and rail profiles are often available as sets of discrete points. A reconstruction method is needed to transform discrete data into a continuous geometry.

Design/methodology/approach

The authors present an approximation method based on optimization to solve the problem of fitting a set of points with an arc spline. It consists of an initial guess based on a curvature function estimated from the data, followed by a least-squares optimization to improve the approximation. The authors also present a segmentation scheme that allows the method to increment the number of segments of the spline, trying to keep it at a minimal value, to satisfy a given error tolerance.

Findings

The paper provides a better understanding of arc splines and how they can be deformed. Examples with parametric curves and slightly noisy data from realistic wheel and rail profiles show that the approach is successful.

Originality/value

The developed methods have theoretical value. Furthermore, they have practical value since the approximation approach is better suited to deal with the reconstruction of wheel/rail profiles than interpolation, which most methods use to some degree.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2004

Bahattin Koc

A new surface error calculation method for layered manufacturing processes is proposed in this paper. The developed method is used to generate the layers by adaptively varying the…

1063

Abstract

A new surface error calculation method for layered manufacturing processes is proposed in this paper. The developed method is used to generate the layers by adaptively varying the thickness of the layers based on the surface approximation errors. Traditionally, the surface errors are calculated using local approximation techniques. In this paper, the surface approximation errors are calculated more accurately by marching through the surface points and determining the distances between layers and the surface points. Using the calculated distances, the adaptive layers are generated for both traditional two‐dimensional layer and ruled‐layer approximation methods. It has been shown that layered manufacturing (rapid prototyping) processes can achieve better accuracy and efficiency using the proposed surface error calculation and the adaptive ruled layer approximation methods. Computer implementation and illustrative examples are also presented in this paper.

Details

Rapid Prototyping Journal, vol. 10 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Article
Publication date: 2 August 2011

Alagar Rangan and Ehsan MoghimiHadji

The purpose of the paper is to provide useful approximations for the computation of g‐renewal function, since no closed form solution of such a function is available

279

Abstract

Purpose

The purpose of the paper is to provide useful approximations for the computation of g‐renewal function, since no closed form solution of such a function is available

Design/methodology/approach

One of the methods uses a simple identity to obtain an approximation. The second method uses the Riemann sum to approximate the integrals to obtain a method of successive approximation.

Findings

The two methods provide satisfactory approximations with the relative errors in the computations are well within the acceptable limits. The accuracy of the successive approximation method could be improved with finer partition of the interval integration but at the cost of computational time.

Research limitations/implications

The computational time increases for the evaluation of the renewal function for increasing values of t.

Originality/value

The paper provides easy to evaluate approximations for g‐renewal functions, which do not have closed form analytical solutions.

Details

International Journal of Quality & Reliability Management, vol. 28 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 February 1993

MINWU YAO and ARNON CHAIT

The homographic approximation, in which the Heaviside step function is replaced by a continuous smooth curve, is applied to the enthalpy method for heat transfer problems with…

Abstract

The homographic approximation, in which the Heaviside step function is replaced by a continuous smooth curve, is applied to the enthalpy method for heat transfer problems with isothermal phase change. Both the finite difference and finite element implementations, based on the basic enthalpy, the apparent heat capacity and the source term formulations, are considered. A 1‐D Stefan problem of melting a solid is used as a test problem. The accuracy of the numerical solutions is measured globally using L2 error norms and comparison is made between the solutions using homographic approximation and those using linear approximation. The advantages of using homographic approximation are examined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2008

Raymond Viskanta

This paper seeks to review the literature on methods for solving the radiative transfer equation (RTE) and integrating the radiant energy quantities over the spectrum required to…

1055

Abstract

Purpose

This paper seeks to review the literature on methods for solving the radiative transfer equation (RTE) and integrating the radiant energy quantities over the spectrum required to predict the flow, the flame and the thermal structures in chemically reacting and radiating combustion systems.

Design/methodology/approach

The focus is on methods that are fast and compatible with the numerical algorithms for solving the transport equations using the computational fluid dynamics techniques. In the methods discussed, the interaction of turbulence and radiation is ignored.

Findings

The overview is limited to four methods (differential approximation, discrete ordinates, discrete transfer, and finite volume) for predicting radiative transfer in multidimensional geometries that meet the desired requirements. Greater detail in the radiative transfer model is required to predict the local flame structure and transport quantities than the global (total) radiation heat transfer rate at the walls of the combustion chamber.

Research limitations/implications

The RTE solution methods and integration of radiant energy quantities over the spectrum are assessed for combustion systems containing only the infra‐red radiating gases and gas particle mixtures. For strongly radiating (i.e. highly sooting) and turbulent flows the neglect of turbulence/radiation interaction may not be justified.

Practical implications

Methods of choice for solving the RTE and obtaining total radiant energy quantities for practical combustion devices are discussed.

Originality/value

The paper has identified relevant references that describe methods capable of accounting for radiative transfer to simulate processes arising in combustion systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 March 2019

Yanina Berdnik and Alexey Beskopylny

The paper aims to obtain an effective solution to the problem on a flow of viscous fluid around a thin plate using a new approximation method based on the exact Navier–Stokes…

Abstract

Purpose

The paper aims to obtain an effective solution to the problem on a flow of viscous fluid around a thin plate using a new approximation method based on the exact Navier–Stokes equations. Also, correction factors are proposed to improve the obtained solution at high Reynolds numbers.

Design/methodology/approach

The paper has opted for a method that is based on an approximation scheme for certain perturbations concerning the velocity of the oncoming unperturbed flow behind a leading edge of the plate as a zero approximation step. The perturbations are assumed to be small, far from the plate when compared to the basic flow to justify the linearization. Numerical methods are used for the integral equations at each approximation step.

Findings

This paper provides the friction force coefficient compared with the classical Blasius solution and the ANSYS results. Also, some diagrams of the velocity distribution in the flow are presented. The first and second approximation steps provide a sufficiently high degree of accuracy.

Research limitations/implications

Because of the chosen research approach, the results may lack accuracy for low and average Reynolds numbers. Thus, researchers are encouraged to improve the proposed method further.

Practical implications

The paper includes implications for the development of an aircraft design or a wind turbine design considering a wing as a thin plate at the first approximation.

Originality/value

This paper provides a new approximation method based on the exact Navier–Stokes equations, in contrast to the known solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 25000