Search results

1 – 10 of 837
Article
Publication date: 28 June 2024

Meghana Kammeta and N.K. Palaniswamy

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and…

Abstract

Purpose

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and outerwear maximize comfort. The primary objective of this research is to investigate the influence of layering outerwear on innerwear, as well as the air gap between two layers, on thermal comfort properties.

Design/methodology/approach

In this study, a total of 12 combinations were created from four vest fabrics and three T-shirt fabrics. The thermal properties (thermal conductivity, thermal resistance, thermal absorptivity, thermal diffusion and peak heat flow) were evaluated for the individual inner and outer layers. Each inner layer was layered with an outer layer to observe the effect of layering on the thermal properties. An air gap of 2 mm was introduced between the inner and outer layers to study the effect of air gap on thermal properties.

Findings

Tencel fibre exhibits higher thermal conductivity and absorptivity than cotton and polyester. Upon layering an outer layer on an inner layer, the thermal conductivity and thermal absorptivity increase to a slight extent, thermal resistance and diffusion increase drastically and the peak heat flow reduces. With an air gap between the two layers, the thermal conductivity did not improve, the difference in thermal resistance among all the combinations reduced, the thermal absorptivity of the combination textiles was lower than that of the innerwear alone, the thermal diffusion increased and the peak heat flow diminished for all the combinations.

Practical implications

In practice, this comprehensive thermal comfort analysis provides specific combinations of inner and outer articles of clothing that are most appropriate for enhancing comfort during the summer season.

Originality/value

Though there are many studies on the effect of multilayer fabrics on thermal properties, no extensive research analyses the influence of innerwear and outerwear combinations on thermal comfort properties.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 August 2024

Wanwan Wang and Mengmeng Zhao

The purpose of this paper is to determine the effect of clothing fabrics, sizes and air ventilation rate on the volume and thickness of the air gap under the air ventilation…

Abstract

Purpose

The purpose of this paper is to determine the effect of clothing fabrics, sizes and air ventilation rate on the volume and thickness of the air gap under the air ventilation garments (AVGs).

Design/methodology/approach

The geometric models of the human body and clothing were obtained by using a 3D body scanner. Then the distribution of the volume and thickness of the air gap for four clothing fabrics and three air ventilation rates (0L/S, 12L/S and 20L/S) were calculated by Geomagic software. Finally, a more suitable fabric was selected from the analysis to compare the distribution of the air gap entrapped for four clothing sizes (S, M, L and XL) and the three air ventilation rates.

Findings

The results show that the influence of air ventilation rate on the air gap volume and thickness is more obvious than that of the clothing fabrics and sizes. The higher is the air ventilation rate, the thicker is the air gap entrapped, and more evenly distributed is the air gap. It can be seen that the thickness of the air gap in the chest does not change significantly with the changes of the air ventilation rates, clothing fabrics and sizes, while the air gap in the waist is affected significantly.

Originality/value

This research provides a better understanding of the distribution of the air gap entrapped in ventilated garments, which can help in designing the optimal air gap dimensions and thus provide a basis and a reference for the design of the AVGs.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 June 2024

Reannan Boisvert, Meredith McQuerry and Sheryl Schofield

Clothing fit, including garment ease and drape, impacts the volume of air between clothing layers and the body, directly affecting the amount of heat that can be transferred…

Abstract

Purpose

Clothing fit, including garment ease and drape, impacts the volume of air between clothing layers and the body, directly affecting the amount of heat that can be transferred through a multi-layer clothing system. As most acute firefighting fatalities are caused by overexertion and heat strain, the purpose of this research was to determine the impact of ease allowances on air gaps in structural firefighting turnout suits and their subsequent effect on total heat loss (THL) when worn on a three-dimensional form.

Design/methodology/approach

Four turnout suits with chest ease allowances of 6″, 8″, 10″ and 12″ were evaluated using an ANDI dynamic sweating thermal manikin. The average predicted manikin THL of each ensemble was calculated from the thermal and evaporative resistance measurements. A three-dimensional (3D) body scanner was utilized to calculate the distance and volume of clothing air gaps between the base layer and each turnout suit.

Findings

Results demonstrate that reductions in upper body ease measurements trend towards statistically significant increases in THL, to a point, with fit limitations being reached before benefits can be significantly realized. An increase in standard chest ease measurements significantly decreased heat loss, even when forced convection from movement was considered.

Originality/value

This is the first article of its kind to explore the relationship between garment ease and predicted manikin THL, especially for fire service protective clothing. Findings indicate a valid recommendation for turnout gear designers and manufacturers to optimize clothing fit to improve breathability and potentially reduce incidents of heat strain in the fire service.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 February 2024

Boyi Li, Miao Tian, Xiaohan Liu, Jun Li, Yun Su and Jiaming Ni

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors…

Abstract

Purpose

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization.

Design/methodology/approach

A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization.

Findings

Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric.

Practical implications

The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research.

Originality/value

The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 September 2024

Junjie Zhao, Gaoming Jiang and Bingxian Li

The purpose of this paper is to solve the diverse and complex problems of flat-knitting sports upper process design, improve the design ability of upper organization, and realize…

Abstract

Purpose

The purpose of this paper is to solve the diverse and complex problems of flat-knitting sports upper process design, improve the design ability of upper organization, and realize three-dimensional simulation function.

Design/methodology/approach

Firstly, the matrix is used to establish the corresponding pattern diagram and organizational diagram model, and the relationship between the two is established by color coding as a bridge to completed the transformation of the flat-knitted sports upper process design model. Secondly, the spatial coordinates of the loop type value points are obtained through the establishment of loop mesh model, the index of two-dimensional and three-dimensional models of uppers and the establishment of spatial transformation relationship. Finally, using Visual Studio as a development tool, use the C# language to implement this series of processes.

Findings

Digitizing the fabric into a matrix model, combined with matrix transformation, can quickly realize the design of the flat-knitting process. Taking the knitting diagram of the upper process as the starting point, the loop geometry model corresponding to the element information is established, and the three-dimensional simulation effect of the flat-knitted upper based on the loop structure is realized under the premise of ensuring that it can be knitted.

Originality/value

This paper proposes a design and modeling method for flat-knitted uppers. Taking the upper design process and 3D simulation effect as an example, the feasibility of the method is verified, which improves the efficiency of the development of the flat-knitted upper product and lays the foundation for the high-end customization of the flat-knitted upper.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 September 2024

Junqiang Su, Yawei Ren, Guoqing Jin and Nan Wang

To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment…

Abstract

Purpose

To setup a theoretical model for grasping cutting pieces of garment better, which will help to design a special soft gripper and push forward the automated level of garment manufacturing.

Design/methodology/approach

This paper first analyzed the mechanics of the grasping process and concluded the main factors that affect the success of grasping. A theoretical model named grasping fabric model (GFM) was constructed to show the mechanical relationship between the soft gripper and the fabric pieces. Subsequently, two fabric samples were selected and tested for their friction properties and critical buckling force, and the test data were substituted into the theoretical model GFM to obtain the grasping parameters required for fabric grasping layer by layer.

Findings

It was found that (1) the critical buckling force of the fabric is mainly influenced by the bending stiffness and the deformation length of the fabric during grab. (2) The difference between the friction between the soft gripper and the fabric and the friction between the fabric, that is DF1-2, has an important influence on the accuracy of grasping layer-by-layer.

Originality/value

It showed that the grasping parameters provided by GFM enable the two samples to be more effectively separated layer by layer, which verifies that the GFM model is strong enough for the possible application in garment automated production.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 July 2024

Jian Shi, Zhenhua Ma, Jieyu Dai and Jundong Wang

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings…

Abstract

Purpose

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings under different temperatures and oxidation times.

Design/methodology/approach

In the high-temperature oxidation test, specimens were oxidized at three different temperatures of 850, 980, and 1,100 °C for durations of 10, 20, 50, 100, 200, and 300 h, respectively. In the gas thermal shock test, specimens were pre-oxidized for 10, 20, 50, and 100 h, followed by a high-temperature gas thermal shock test at 1,100 °C.

Findings

In the high-temperature oxidation tests, with increasing oxidation time, the oxidation layer thickened, and the air-film holes diameter decreased. The microstructure of the bond coat transitioned from strip-like to block-like, and internal cracks transformed from numerous and short to larger and deeper. Below the bond coat, a noticeable disappearance layer of strengthening phase appeared, with increasing thickness. The strengthening phase in the substrate transitioned from regular square shapes to circles as temperature increased. In gas thermal shock tests at 1,100 °C, the oxidation weight gain ratio increased with longer pre-oxidation times, whereas the erosion weight loss ratio gradually decreased.

Originality/value

The originality and significance of this study lie in its departure from the typical subjects of high-temperature oxidation and thermal shock tests. Unlike common research targets, this study focuses on IC10 simulative specimens with thermal barrier coatings and air-film holes. Furthermore, it investigates the effects of varying temperatures and oxidation durations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 June 2024

Yun Su, Hui Wang, Guangju Liu, Yunyi Wang, Jianlin Liu and Miao Tian

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on…

Abstract

Purpose

The paper aims to reveal the relationship among energy efficiency, thermal comfort and thermal regulation of electrically heated footwear and to investigate influencing factors on the energy efficiency and thermal comfort.

Design/methodology/approach

A finite volume model was proposed to simulate the two-dimensional heat transfer in electrically heated footwear (EHF) under an extremely cold condition. The model domain consists of three-layer footwear materials, a heating pad, a sock material, an air gap and skin tissues. Model predictions were verified by experimental data from cold-contact exposure. Then the influencing factors on the energy efficiency and thermal comfort were investigated through parametric analysis.

Findings

The paper demonstrated that the skin temperature control (STC) mode provided superior thermal comfort compared to the heating pad temperature control (HPTC) mode. However, the energy efficiency for the HPTC mode with a heating temperature of 38 °C was 18% higher than the STC mode. The energy efficiency of EHF while reaching the state of thermal comfort was strongly determined by the arrangement and connection of heating elements, heating temperature, thickness and thermal conductivity of footwear materials.

Originality/value

The findings obtained in this paper can be used to engineer the EHF that provides optimal thermal comfort and energy efficiency in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 837