Search results

1 – 10 of 10
Open Access
Article
Publication date: 8 December 2020

Maximilian Kunovjanek and Christian Wankmüller

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive…

6008

Abstract

Purpose

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive manufacturing (AM) provided relief to the strained healthcare systems and manufacturing environments by offering an alternative way to rapidly produce desired products. This study sheds light on how AM was used globally in response to the COVID-19 pandemic.

Design/methodology/approach

The study undertakes a systematic and content-centric review of 289 additively manufactured products made in response to the COVID-19 pandemic. Additionally, quantitative frequency-based text mining and various descriptive analyses were applied that support the investigation of the subject under regard.

Findings

Results show that AM was primarily used in the medical domain for the production of standard medical items, such as personal protective equipment (PPE) but also for non-obvious and new applications (e.g. swab simulator, rapid diagnostic kits, etc.). Also, certain paradigm shifts were observed, as the effective move to mass production and the mitigation of problems related to certification and standardization emerged as prominent management prospects. Nevertheless, various obstacles arose and remained in the path of lasting AM success, especially with respect to print quality, raw material supply and technological versatility.

Originality/value

Due to the actuality of the topic under investigation, no comparable study has so far been conducted. The systematic review provides a conclusive and precise foundation for further analysis and subsequent discussions. Additionally, no comparable study mapping such a wide array of different AM products exists today.

Details

Journal of Manufacturing Technology Management, vol. 32 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 July 2023

Jorge Manuel Mercado-Colmenero, M. Dolores La Rubia, Elena Mata-García, Moisés Rodriguez-Santiago and Cristina Martin-Doñate

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured…

Abstract

Purpose

Because of the anisotropy of the process and the variability in the quality of printed parts, finite element analysis is not directly applicable to recycled materials manufactured using fused filament fabrication. The purpose of this study is to investigate the numerical-experimental mechanical behavior modeling of the recycled polymer, that is, recyclable polyethylene terephthalate (rPET), manufactured by a deposition FFF process under compressive stresses for new sustainable designs.

Design/methodology/approach

In all, 42 test specimens were manufactured and analyzed according to the ASTM D695-15 standards. Eight numerical analyzes were performed on a real design manufactured with rPET using Young's compression modulus from the experimental tests. Finally, eight additional experimental tests under uniaxial compression loads were performed on the real sustainable design for validating its mechanical behavior versus computational numerical tests.

Findings

As a result of the experimental tests, rPET behaves linearly until it reaches the elastic limit, along each manufacturing axis. The results of this study confirmed the design's structural safety by the load scenario and operating boundary conditions. Experimental and numerical results show a difference of 0.001–0.024 mm, allowing for the rPET to be configured as isotropic in numerical simulation software without having to modify its material modeling equations.

Practical implications

The results obtained are of great help to industry, designers and researchers because they validate the use of recycled rPET for the ecological production of real-sustainable products using MEX technology under compressive stress and its configuration for numerical simulations. Major design companies are now using recycled plastic materials in their high-end designs.

Originality/value

Validation results have been presented on test specimens and real items, comparing experimental material configuration values with numerical results. Specifically, to the best of the authors’ knowledge, no industrial or scientific work has been conducted with rPET subjected to uniaxial compression loads for characterizing experimentally and numerically the material using these results for validating a real case of a sustainable industrial product.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 March 2023

Alessio Ronchini, Antonella Maria Moretto and Federico Caniato

This paper investigates how the adoption of additive manufacturing (AM) impacts upstream supply chain (SC) design and considers the influence of drivers and barriers towards the…

1779

Abstract

Purpose

This paper investigates how the adoption of additive manufacturing (AM) impacts upstream supply chain (SC) design and considers the influence of drivers and barriers towards the adoption.

Design/methodology/approach

Ten case studies investigating AM adoption by Original Equipment Manufacturers (OEMs) in five industries were conducted. This research is driven by a literature-based framework, and the results are discussed according to the theory of transaction cost economics (TCE).

Findings

The case studies reveal four patterns of AM adoption that affect upstream SC design (due to changes in supply base or types of buyer–supplier relationships): make, buy, make and buy and vertical integration. A make or buy decision is based on the level of experience with the technology, on the AM application (rapid manufacturing, prototyping or tooling) and on the need of control over production. Other barriers playing a role in the decision are the high initial investments and the lack of skills and knowledge.

Originality/value

This paper shows how different decisions regarding AM adoption result in different SC designs, with a specific focus on the upstream SC and changes in the supply base. This research is among the first to provide empirical evidence on the impact of AM adoption on upstream SCs and to identify drivers of the make or buy decision when adopting AM through the theoretical lens of TCE.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 4
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6625

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 July 2021

Susan Erica Nace, John Tiernan, Donal Holland and Aisling Ni Annaidh

Most support surfaces in comfort applications and sporting equipment are made from pressure-relieving foam such as viscoelastic polyurethane. However, for some users, foam is not…

3474

Abstract

Purpose

Most support surfaces in comfort applications and sporting equipment are made from pressure-relieving foam such as viscoelastic polyurethane. However, for some users, foam is not the best material as it acts as a thermal insulator and it may not offer adequate postural support. The additive manufacturing of such surfaces and equipment may alleviate these issues, but material and design investigation is needed to optimize the printing parameters for use in pressure relief applications. This study aims to assess the ability of an additive manufactured flexible polymer to perform similarly to a viscoelastic foam for use in comfort applications.

Design/methodology/approach

Three-dimensional (3D) printed samples of thermoplastic polyurethane (TPU) are tested in uniaxial compression with four different infill patterns and varying infill percentage. The behaviours of the samples are compared to a viscoelastic polyurethane foam used in various comfort applications.

Findings

Results indicate that TPU experiences an increase in strength with an increasing infill percentage. Findings from the study suggest that infill pattern impacts the compressive response of 3D printed material, with two-dimensional patterns inducing an elasto-plastic buckling of the cell walls in TPU depending on infill percentage. Such buckling may not be a beneficial property for comfort applications. Based on the results, the authors suggest printing from TPU with a low-density 3D infill, such as 5% gyroid.

Originality/value

Several common infill patterns are characterised in compression in this work, suggesting the importance of infill choices when 3D printing end-use products and design for manufacturing.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 December 2022

Biniam Tekle Teweldebrhan, Praveen Maghelal and Abdulla Galadari

Although additive manufacturing (AM; 3D printing/3DP) is presently in its infancy, once it becomes economically viable for mass production, it would revolutionize the operation…

1659

Abstract

Purpose

Although additive manufacturing (AM; 3D printing/3DP) is presently in its infancy, once it becomes economically viable for mass production, it would revolutionize the operation and supply chain network of traditional businesses and manufacturing industries. To this end, approaches for ensuring a smooth transition of the economy, businesses, manufacturing centers and related services are being investigated. This review paper assesses the existing literature on the impact of AM on the maritime transportation sector.

Design/methodology/approach

This paper provides a systematic literature review through three methodological phases: (1) a comprehensive review of the number of English language literature studies published on the topics of AM or 3DP (1970–2021); (2) a bibliometric analysis of selected keyword combinations and (3) a detailed review on the impact of AM on different sectors.

Findings

The key findings are that existing studies do not attempt to forecast shipping volume and ton-miles that can be affected by the mainstreaming of the technology. Additionally, existing literature that focuses on the impact of the technology on different shipping categories is limited to studies on container ships.

Originality/value

The review identifies some potential areas of research that since maritime transportation will be affected by mainstreaming AM, it will have economic, social and environmental impacts on global trade that require future assessment.

Details

Journal of International Logistics and Trade, vol. 20 no. 4
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 5 May 2022

Mario Tani, Ciro Troise, Paola De Bernardi and Tian Han

Additive manufacturing (AM) technologies, also known as three-dimensional printing (3DP), is a technological breakthrough that have the potential to disrupt the traditional…

Abstract

Purpose

Additive manufacturing (AM) technologies, also known as three-dimensional printing (3DP), is a technological breakthrough that have the potential to disrupt the traditional operations of supply chains. They open the way to a supply chains innovation that can significantly benefit hospitals and health-related organizations in dealing with crises or unexpected events in a faster and more flexible way. In this study the authors identify the boundary of this potential support.

Design/methodology/approach

The authors adopt a case study approach to understand the dynamics behind a well-known best practice to identify the main opportunities and the main pitfalls that AM may pose to health-related organizations wanting to leverage them.

Findings

The case highlights that it is possible to increase hospital flexibility using AM and that by leveraging the Internet it is possible to spread the benefits faster than what it would be normally possible using traditional supply chain processes. At the same time the case highlights that leveraging these technologies needs buy-in from all the relevant stakeholders.

Originality/value

The paper is one of the first, to the best of the authors' knowledge, to highlight the main opportunities and difficulties of implementing 3DP technologies in hospital supply chain management.

Details

European Journal of Innovation Management, vol. 25 no. 6
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 16 February 2023

Tamilarasu Sinnaiah, Sabrinah Adam and Batiah Mahadi

The purpose of this paper is to present a conceptual framework for integrating strategic thinking factors, organisational performance and the decision-making process.

19828

Abstract

Purpose

The purpose of this paper is to present a conceptual framework for integrating strategic thinking factors, organisational performance and the decision-making process.

Design/methodology/approach

The methodology involves a synthesis of literature and proposes a framework that explores the relationship between strategic thinking enabling factors, organisational performance and the moderating effect of decision-making styles.

Findings

The framework includes strategic thinking enabling factors (systems perspective, focused intent, intelligent opportunism, thinking in time and hypothesis-driven analysis), organisational performance and the moderating effect of decision-making styles (intuitive and rational).

Research limitations/implications

This research results in a conceptual model only; it remains to be tested in actual practice. The expanded conceptual framework can serve as a basis for future empirical research and provide insights to practitioners into how to strengthen policy development in a strategic planning process.

Originality/value

A paradigm shift in the literature proves that strategic management and decision-making styles are vital in determining organisational performance. This paper highlights the importance of decision-making styles and develops a framework for strategic management by analysing the existing strategic management literature.

Details

Journal of Work-Applied Management, vol. 15 no. 1
Type: Research Article
ISSN: 2205-2062

Keywords

Access

Only content I have access to

Year

Content type

Article (10)
1 – 10 of 10