Search results

1 – 10 of over 3000
Article
Publication date: 14 June 2019

Wentong Zhang and Yiqing Xiao

Balancing accuracy and efficiency is an important evaluation index of response surface method. The purpose of this paper is to propose an adaptive order response surface method

Abstract

Purpose

Balancing accuracy and efficiency is an important evaluation index of response surface method. The purpose of this paper is to propose an adaptive order response surface method (AORSM) based on univariate decomposition model (UDM).

Design/methodology/approach

First, the nonlinearity of the univariate function can be judged by evaluating the goodness of fit and the error of curve fit rationally. Second, combining UDM with the order analysis of separate component polynomial, an easy-to-implement AORSM is proposed. Finally, several examples involving mathematical functions and structural engineering problems are studied in detail.

Findings

With the proposed AORSM, the orders of component functions in the original response surface can be determined adaptively and the results of those cases in this paper indicate that the proposed method performs good accuracy, efficiency and robustness.

Research limitations/implications

Because just the cases with single failure mode and single MPP are studied in this paper, the application in multi-failure mode and multi-MPP cases need to be investigated in the coming work.

Originality/value

The nonlinearity of the univariate in the response surface can be determined adaptively and the undetermined coefficients of each component function are obtained separately, which reduces the computation dramatically.

Article
Publication date: 17 May 2021

Wenliang Fan, Wei Shen, Qingbin Zhang and Alfredo H.-S. Ang

The purpose of this study is to improve the efficiency and accuracy of response surface method (RSM), as well as its robustness.

Abstract

Purpose

The purpose of this study is to improve the efficiency and accuracy of response surface method (RSM), as well as its robustness.

Design/methodology/approach

By introducing cut-high-dimensional representation model (HDMR), the delineation of cross terms and the constitution analysis of component function, a new adaptive RSM is presented for reliability calculation, where a sampling scheme is also proposed to help constructing response surface close to limit-state.

Findings

The proposed method has a more feasible process of evaluating undetermined coefficients of each component function than traditional RSM, and performs well in terms of balancing the efficiency and accuracy when compared to the traditional second-order polynomial RSM. Moreover, the proposed method is robust on the parameter in a wide range, indicating that it is able to obtain convergent result in a wide feasible domain of sample points.

Originality/value

This study constructed an adaptive bivariate cut-HDMR by introducing delineation of cross-terms and constitution of univariate component function; and a new sampling technique is proposed.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 April 2020

Wenliang Fan, Wentong Zhang, Min Li, Alfredo H.-S. Ang and Zhengliang Li

Based on univariate dimension-reduction model, this study aims to propose an adaptive anisotropic response surface method (ARSM) and its high-order revision (HARSM) to balance the…

Abstract

Purpose

Based on univariate dimension-reduction model, this study aims to propose an adaptive anisotropic response surface method (ARSM) and its high-order revision (HARSM) to balance the accuracy and efficiency for response surface method (RSM).

Design/methodology/approach

First, judgment criteria for the constitution of a univariate function are derived mathematically, together with the practical implementation. Second, by combining separate polynomial approximation of each component function of univariate dimension-reduction model with its constitution analysis, the anisotropic ARSM is proposed. Third, the high-order revision for component functions is introduced to improve the accuracy of ARSM, namely, HARSM, in which the revision is also anisotropic. Finally, several examples are investigated to verify the accuracy, efficiency and convergence of the proposed methods, and the influence of parameters on the proposed methods is also performed.

Findings

The criteria for constitution analysis are appropriate and practical. Obtaining the undetermined coefficients for every component functions is easier than the existing RSMs. The existence of special component functions is useful to improve the efficiency of the ARSM. HARSM is helpful for improving accuracy significantly and it is more robust than ARSM and the existing quadratic polynomial RSMs and linear RSM. ARSM and HARSM can achieve appropriate balance between precision and efficiency.

Originality/value

The constitution of univariate function can be determined adaptively and the nonlinearity of different variables in the response surface can be treated in an anisotropic way.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2020

Hailiang Su, Fengchong Lan, Yuyan He and Jiqing Chen

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state…

Abstract

Purpose

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state function (LSF), the approximate accuracy of the failure probability mainly depends on the design point, and the result is that the response surface function composed of initial experimental points rarely fits the LSF exactly. The inaccurate design points usually cause some errors in the traditional RSM. The purpose of this paper is to present a hybrid method combining adaptive moving experimental points strategy and RSM, describing a new response surface using downhill simplex algorithm (DSA-RSM).

Design/methodology/approach

In DSA-RSM, the operation mechanism principle of the basic DSA, in which local descending vectors are automatically generated, was studied. Then, the search strategy of the basic DSA was changed and the RSM approximate model was reconstructed by combining the direct search advantage of DSA with the reliability mechanism of response surface analysis.

Findings

The computational power of the proposed method is demonstrated by solving four structural reliability problems, including the actual engineering problem of a car collision. Compared to specific structural reliability analysis methods, the approach of modified DSA interpolation response surface for structural reliability has a good convergent capability and computational accuracy.

Originality/value

This paper proposes a new RSM technology based on proxy model to complete the reliability analysis. The originality of this paper is to present an improved RSM that adjusts the position of the experimental points judiciously by using the DSA principle to make the fitted response surface closer to the actual limit state surface.

Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 July 2017

Leifur Leifsson and Slawomir Koziel

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Abstract

Purpose

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Design/methodology/approach

The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments.

Findings

Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches.

Originality/value

The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.

Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 August 2019

Yangtian Li, Haibin Li and Guangmei Wei

To present the models with many model parameters by polynomial chaos expansion (PCE), and improve the accuracy, this paper aims to present dimension-adaptive algorithm-based PCE…

Abstract

Purpose

To present the models with many model parameters by polynomial chaos expansion (PCE), and improve the accuracy, this paper aims to present dimension-adaptive algorithm-based PCE technique and verify the feasibility of the proposed method through taking solid rocket motor ignition under low temperature as an example.

Design/methodology/approach

The main approaches of this work are as follows: presenting a two-step dimension-adaptive algorithm; through computing the PCE coefficients using dimension-adaptive algorithm, improving the accuracy of PCE surrogate model obtained; and applying the proposed method to uncertainty quantification (UQ) of solid rocket motor ignition under low temperature to verify the feasibility of the proposed method.

Findings

The result indicates that by means of comparing with some conventional non-invasive method, the proposed method is able to raise the computational accuracy significantly on condition of meeting the efficiency requirement.

Originality/value

This paper proposes an approach in which the optimal non-uniform grid that can avoid the issue of overfitting or underfitting is obtained.

Article
Publication date: 11 May 2022

Xiangqian Sheng, Wenliang Fan, Qingbin Zhang and Zhengling Li

The polynomial dimensional decomposition (PDD) method is a popular tool to establish a surrogate model in several scientific areas and engineering disciplines. The selection of…

Abstract

Purpose

The polynomial dimensional decomposition (PDD) method is a popular tool to establish a surrogate model in several scientific areas and engineering disciplines. The selection of appropriate truncated polynomials is the main topic in the PDD. In this paper, an easy-to-implement adaptive PDD method with a better balance between precision and efficiency is proposed.

Design/methodology/approach

First, the original random variables are transformed into corresponding independent reference variables according to the statistical information of variables. Second, the performance function is decomposed as a summation of component functions that can be approximated through a series of orthogonal polynomials. Third, the truncated maximum order of the orthogonal polynomial functions is determined through the nonlinear judgment method. The corresponding expansion coefficients are calculated through the point estimation method. Subsequently, the performance function is reconstructed through appropriate orthogonal polynomials and known expansion coefficients.

Findings

Several examples are investigated to illustrate the accuracy and efficiency of the proposed method compared with the other methods in reliability analysis.

Originality/value

The number of unknown coefficients is significantly reduced, and the computational burden for reliability analysis is eased accordingly. The coefficient evaluation for the multivariate component function is decoupled with the order judgment of the variable. The proposed method achieves a good trade-off of efficiency and accuracy for reliability analysis.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000