Search results

1 – 10 of over 22000
Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear…

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 March 2021

Nigar Ahmed, Abid Raza and Rameez Khan

The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique…

Abstract

Purpose

The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique and a DO.

Design/methodology/approach

For designing a DOBC, initially a class of nonlinear system is considered with an external disturbance. First, a DO is designed to estimate the external disturbances. This estimate is combined with the controller to reject the disturbances and obtain the desired control objective. For designing a controller, the robust sliding mode control theory is used. Furthermore, instead of using a constant switching gain, an adaptive gain tuning criterion is designed using Lyapunov candidate function. To investigate the stability and effectiveness of the developed DOBC, stability analysis and simulation study are presented.

Findings

The major findings of this paper include the criteria of designing the robust adaptive control parameters and investigating the disturbance rejection when robust adaptive control based DOBC is developed.

Practical implications

In practice, the flight of quadrotor is affected by different kind of external disturbances, thus leading to the change in dynamics. Hence, it is necessary to design DOBCs based on robust adaptive controllers such that the quadrotor model adapts to the change in dynamics, as well as nullify the effect of disturbances.

Originality/value

Designing DOBCs based on robust control method is a common practice; however, the robust adaptive control method is rarely developed. This paper contributes in the domain of DOBC based on robust adaptive control methods such that the behavior of controller varies with the change in dynamics occurring due to external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 2003

M.A. Duarte‐Mermoud, J.M. Mendez‐Miquel, R. Castro‐Linares and A. Castillo‐Facuse

This paper addresses the adaptive passivation of multi‐input multi‐output (MIMO) non‐linear systems,with unknown parameters. The class of MIMO non‐linear systems considered here…

Abstract

This paper addresses the adaptive passivation of multi‐input multi‐output (MIMO) non‐linear systems,with unknown parameters. The class of MIMO non‐linear systems considered here has an explicit linear parametric uncertainty and it is made equivalent to a passive system by means of an adaptive controller with adaptive laws specially designed, which include suitable time‐varying gains. The solution presented here is an extension of that obtained by the authors for single‐input single‐output (SISO) systems. The proposed algorithm was applied, at simulation level, to models of dynamical MIMO systems, to exemplify the controller design methodology and to observe the adaptive system behavior.

Details

Kybernetes, vol. 32 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 June 2014

Xiangjian Chen, Di Li, Zhijun Xu and Yue Bai

Micro aerial vehicle is nonlinear plant; it is difficult to obtain stable control for MAV attitude due to uncertainties. The purpose of this paper is to propose one robust stable…

Abstract

Purpose

Micro aerial vehicle is nonlinear plant; it is difficult to obtain stable control for MAV attitude due to uncertainties. The purpose of this paper is to propose one robust stable control strategy for MAV to accommodate system uncertainties, variations, and external disturbances.

Design/methodology/approach

First, by employing interval type-II fuzzy neural network (ITIIFNN) to approximate the nonlinearity function and uncertainty functions in the attitude angle dynamic model of micro aircraft vehicle (MAV). Then, the Lyapunov stability theorem is used to testify the asymptotic stability of the closed-loop system, the parameters of the ITIIFNN and gain of sliding mode control can be tuned on-line by adaptive laws based on Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system.

Findings

The validity of the proposed control method has been verified through real-time experiments. The experimental results show that the performance of interval type-II fuzzy neural network based gain adaptive sliding mode controller (GASMC-ITIIFNN) is significantly improved compared with conventional adaptive sliding mode controller (CASMC), type-I fuzzy neural network based sliding mode controller (GASMC-TIFNN).

Practical implications

This approach has been used in one MAV, the controller works well, and which could guarantee the MAV control system with good performances under uncertainties, variations, and external disturbances.

Originality/value

The main original contributions of this paper are: the proposed control scheme makes full use of the nominal model of the MAV attitude control model; the overall closed-loop control system is globally stable demonstrated by Lyapunov stable theory; the tracking error can be asymptotically attenuated to a desired small level around zero by appropriate chosen parameters and learning rates; and the MAV attitude control system based on GASMC-ITIIFNN controller can achieve favourable tracking performance than GASMC-TIFNN and CASMC.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 November 2019

Megha G. Krishnan, Abhilash T. Vijayan and Ashok Sankar

This paper aims to improve the performance of a two-camera robotic feedback system designed for automatic pick and place application by modifying its velocity profile during…

Abstract

Purpose

This paper aims to improve the performance of a two-camera robotic feedback system designed for automatic pick and place application by modifying its velocity profile during switching of control.

Design/methodology/approach

Cooperation of global and local vision sensors ensures visibility of the target for a two-camera robotic system. The master camera, monitoring the workspace, guides the robot such that image-based visual servoing (IBVS) by the eye-in-hand camera transcends its inherent shortcomings. A hybrid control law steers the robot until the system switches to IBVS in a region proven for its asymptotic stability and convergence through a qualitative overview of the scheme. Complementary gain factors can ensure a smooth transition in velocity during switching considering the versatility and range of the workspace.

Findings

The proposed strategy is verified through simulation studies and implemented on a 6-DOF industrial robot ABB IRB 1200 to validate the practicality of adaptive gain approach while switching in a hybrid visual feedback system. This approach can be extended to any control problem with uneven switching surfaces or coarse/fine controllers which are subjected to discrete time events.

Practical implications

In complex workspace where robots operate in parallel with other robots/humans and share workspaces, the supervisory control scheme ensures convergence. This study proves that hybrid control laws are more effective than conventional approaches in unstructured environments and visibility constraints can be overcome by the integration of multiple vision sensors.

Originality/value

The supervisory control is designed to combine the visual feedback data from eye-in-hand and eye-to-hand sensors. A gain adaptive approach smoothens the velocity characteristics of the end-effector while switching the control from master camera to the end-effector camera.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 May 2024

Mingze Wang, Yuhe Yang and Yuliang Bai

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude…

Abstract

Purpose

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude constraints and mismatched disturbances.

Design/methodology/approach

A novel ASMC based on barrier function is adopted to deal with matched and mismatched disturbances. The upper bounds of the disturbances are not required to be known in advance. Meanwhile, a predefined performance function (PPF) with prescribed convergence time is used to adjust the boundary of the barrier function. The transient performance, including the overshoot, convergence rate and settling time, as well as the steady-state performance of the attitude tracking error are retained in the predetermined region under the barrier function and PPF. The stability of the proposed control method is analyzed via Lyapunov method.

Findings

In contrast to conventional adaptive back-stepping methods, the proposed method is comparatively simple and effective which does not need to disassemble the control system into multiple first-order systems. The proposed barrier function based on PPF can adjust not only the switching gain in an adaptive way but also the convergence time and steady-state error. And the efficiency of the proposed method is illustrated by conducting numerical simulations.

Originality/value

A novel barrier function based ASMC method is proposed to fit in the amplitude of the mismatched and matched disturbances. The transient and steady-state performance of attitude tracking error can be selected as prior control parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 November 2021

Gangfeng Yan

The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use…

Abstract

Purpose

The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use in engineering practice.

Design/methodology/approach

Using double sliding mode surfaces, the gain of the control signal can be adjusted adaptively according to the error signal. A kind of sliding mode controller without chattering is designed and applied to the control of ultrasonic motors.

Findings

The results show that for a position signal with a tracking amplitude of 35 mm, the traditional sliding mode control method has a maximum tracking error of 0.3326 mm under the premise of small chattering; the boundary layer sliding mode control method has a maximum tracking error of 0.3927 mm without chattering, and the maximum tracking error of continuous switching adaptive sliding mode control is 0.1589 mm, and there is no chattering. Under the same control parameters, after adding a load of 0.5 kg, the maximum tracking errors of the traditional sliding mode control method, the boundary layer sliding mode control method and the continuous switching adaptive sliding mode control are 0.4292 mm, 0.5111 mm and 0.1848 mm, respectively.

Originality/value

The proposed method not only switches continuously, but also the amplitude of the switching signal is adaptive, while maintaining the robustness of the conventional sliding mode control method, which has strong engineering application value.

Details

Assembly Automation, vol. 42 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 May 2022

Syed Awais Ali Shah, Bingtuan Gao, Ajeet Kumar Bhatia, Chuande Liu and Arshad Rauf

Barge-type offshore floating wind turbine (OFWT) commonly exhibits an under-actuated phenomenon in an offshore environment, which leads to a potential vibration-damping hazard…

Abstract

Purpose

Barge-type offshore floating wind turbine (OFWT) commonly exhibits an under-actuated phenomenon in an offshore environment, which leads to a potential vibration-damping hazard. This article aims to provide a new robust output feedback anti-vibrational control scheme for the novel translational oscillator with rotational actuator (TORA) based five-degrees of freedom (5-DOF) barge-type OFWT in the presence of unwanted disturbances and modeling uncertainties.

Design/methodology/approach

In this paper, an active control technique called TORA has been used to design a 5-DOF barge-type OFWT model, where the mathematical model of the proposed system is derived by using Euler–Lagrange's equations. The robust hierarchical backstepping integral nonsingular terminal sliding mode control (HBINTSMC) with an adaptive gain is used in conjunction with extended order high gain observer (EHGO) to achieve system stabilization in the presence of unwanted disturbances and modeling uncertainties. The numerical simulations based on MATLAB/SIMULINK have been performed to demonstrate the feasibility and effectiveness of the proposed model and control law.

Findings

The numerical simulation results affirm the accuracy and efficiency of the proposed control law for the TORA based OFWT system. The results demonstrate that the proposed control law is robust against unwanted disturbances and uncertainties. The unknown states are accurately estimated by EHGO which enables the controller to exhibit improved stabilization performance.

Originality/value

A new mathematical model of the 5-DOF barge-type OFWT system based on TORA is the major contribution of this research paper. Furthermore, it provides a new adaptive anti-vibration control scheme by incorporating the EHGO for the proposed model.

Article
Publication date: 27 March 2009

Chun‐Fei Hsu, Chia‐Yu Hsu, Chih‐Min Lin and Tsu‐Tian Lee

A chaotic system is a nonlinear deterministic system that displays complex, noisy‐like and unpredictable behavior. The interest in chaotic systems lies mostly upon their complex…

Abstract

Purpose

A chaotic system is a nonlinear deterministic system that displays complex, noisy‐like and unpredictable behavior. The interest in chaotic systems lies mostly upon their complex, unpredictable behavior, and extreme sensitivity to initial conditions as well as parameter variations. Based on wavelet neural network's (WNN) online approximation ability, the purpose of this paper is to propose an adaptive Gaussian wavelet neural control (AGWNC) system to control a chaotic system.

Design/methodology/approach

The proposed AGWNC system is composed of a wavelet neural controller and a compensation tangent controller. The wavelet neural controller utilizes a Gaussian WNN to mimic an ideal controller, and the compensation tangent controller is designed to compensate the approximation error between the ideal and the wavelet neural controllers. The controller parameters of the proposed AGWNC can online tune in the Lyapunov sense, thus the uniformly ultimately bounded stability of closed‐loop system can be guaranteed.

Findings

The proposed AGWNC system is applied to a chaotic system. Simulation results are used to demonstrate the effectiveness and performance of the proposed AGWNC scheme. Simulation results show that not only the favorable control performance can be achieved but also the control efforts without any chattering phenomena. Moreover, all controller parameters can be online tuning by the derived adaptive laws based on the Lyapunov function.

Originality/value

The proposed AGWNC approach is interesting for the design of an intelligent control scheme. The main contributions of this paper are: the overall closed‐loop control system is globally stable in uniform ultimate boundedness; the tracking error can be asymptotically attenuated to a desired small level around zero by appropriate chosen parameters and learning rates; and the AGWNC system can achieve favorable tracking performance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 October 2005

Qinglei Hu and Guangfu Ma

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities…

1032

Abstract

Purpose

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities during attitude control for spacecraft designers, which can help them analyze and design the attitude control system.

Design/methodology/approach

The new approach integrates the technique of active vibration suppression and the method of variable structure control. The design process is twofold: first design of the active vibration controller by using piezoelectric materials to add damping to the structures in certain critical modes in the inner feedback loop, and then a second feedback loop designed using the variable structure output feedback control (VSOFC) to slew the spacecraft and satisfy the pointing requirements.

Findings

Numerical simulations for the flexible spacecraft show that the precise attitude control and vibration suppression can be accomplished using the derived vibration attenuator and attitude control controller.

Research limitations/implications

Studies on how to control the flywheel (motor) under the action of the friction are left for future work.

Practical implications

An effective method is proposed for the spacecraft engineers planning to design attitude control system for actively suppressing the vibration and at the same time quickly and precisely responding to the attitude control command.

Originality/value

This paper fulfills a useful source of theoretical analysis for the attitude control system design and offers practical help for the spacecraft designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 22000