Search results

1 – 10 of over 7000
Article
Publication date: 24 October 2018

Ayush Jain, Abhishek Singh and Arendra Pal Singh

This paper aims to study the sliding wear and coefficient of friction (COF) using “ball on disc” tribometer. Discs of bearing steel were subjected to different tribological…

Abstract

Purpose

This paper aims to study the sliding wear and coefficient of friction (COF) using “ball on disc” tribometer. Discs of bearing steel were subjected to different tribological parameters such as heat treatment (through hardening and case hardening), sliding speed, sliding distance and micro-geometry of the functional ball and disc point contact. Results obtained from tribometer were correlated with the preload loss in tapered roller bearing. Preload loss is subjected to wear rate pattern with respect to the internal geometry and micro-geometry of functional surfaces of the tapered roller bearing, caused by internal resistance between roller large ends sliding against cone supporting face. This confirms the optimum geometry and physical/mechanical property of the tapered roller bearing, which makes the use of these bearings under the demanding application in the automotive industry such as differential gears and installation of pinions of differential gears in power transmissions or wheels.

Design/methodology/approach

The paper opted for an exploratory study using the design of experiments with full factorial method. The approach was to do ball on disc sliding wear test and correlate that sliding wear with preload loss in tapered roller bearing.

Findings

The paper provides the limit of preload loss in tapered roller bearing.

Research limitations/implications

Because of the chosen research approach, the research lacks the effect of environmental conditions such as temperature and relative humidity and lube film thickness effect on wear test. It also lacks the validation part with actual preload loss on tapered roller bearings. Above work is included in future scope of work.

Practical implications

This paper includes the recommendation for surface parameters which can increase the bearing life by reducing the preload loss in tapered roller bearing.

Social implications

This paper includes the recommendation for surface parameters for bearing manufacturing industries.

Originality/value

This paper provides the relation between sliding wear and preload loss in tapered roller bearing.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2019

Gabriel Ferri, Leonardo Dias, Ruan de Carvalho and Henara Costa

Surface texturing can improve the tribological performance of contacting sliding surfaces under different contact and lubrication conditions, which has been proved both…

Abstract

Purpose

Surface texturing can improve the tribological performance of contacting sliding surfaces under different contact and lubrication conditions, which has been proved both numerically and experimentally. This study aims to suggest a new methodology to evaluate the tribological behavior of textured surfaces using an adapted pendular scratch tester.

Design/methodology/approach

A Charpy-type tester was adapted to meet conditions that are relevant for sliding surfaces. The test rig was used to evaluate low carbon steel textured surfaces produced via maskless electrochemical texturing. The textures were composed of 100 pockets with an average diameter of 200 µm of and variable average depths (1.5, 3.5 and 7 µm). The tests were performed under dry and lubricated conditions for smooth and textured surfaces. The lubricated tests simulated a starved condition by applying a drop of lubricant.

Findings

For starved lubrication, surface texturing reduced the sliding energy when compared with smooth surfaces. This was attributed to the pocket’s ability to provide an additional supply of lubricant, as well as a reduced amount of plastic deformation around the pockets during sliding of the indenter. However, under dry sliding conditions, no significant effect of surface texturing was detected.

Originality/value

A new evaluation methodology was proposed, using single-pass pendular sliding of a spherical indenter to measures the energy absorbed during sliding, which was referred to as sliding energy. The measurements are repeatable and can detect sliding energy differences between smooth and textured surfaces.

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Sudipto Ray and S.K. Roy Chowdhury

The paper's aim is to predict numerically the contact temperatures between two rough sliding bodies and to compare with the experimental results.

Abstract

Purpose

The paper's aim is to predict numerically the contact temperatures between two rough sliding bodies and to compare with the experimental results.

Design/methodology/approach

An elastic contact algorithm is used to analyze the normal contact between two nominally smooth surfaces. The algorithm evaluates real contact area using digitized roughness data and the corresponding contact pressure distribution. Using finite element method a steady state 3D temperature distribution at the interface between the sliding bodies is obtained. Using infrared (IR) imaging technique, experiments were carried out to measure the contact temperature distribution between rough rubbing bodies with a systematic variation of surface roughness and operating variables.

Findings

Contact temperature distributions over a wide range of normal load, sliding velocity and surface roughness have been obtained. It was seen that the maximum contact temperature expectedly increases with surface roughness (Sa values), normal load and sliding velocity. The results also indicate that the “hot spots” are located exactly at the positions where the contact pressures are extremely high. Temperatures can be seen to fall drastically at areas where no asperity contacts were established. The temperature contours at different depths were also plotted and it was observed that the temperatures fall away from the actual contact zone and relatively high temperatures persist at the “hot spot” zones much below the contact surface. Finally it is encouraging to find a good correlation between the numerical and experimental results and this indicates the strength of the present analysis.

Research limitations/implications

Experimental accuracy can be improved by using a thermal imaging camera that measures emissivity in situ and uses it to find the contact temperature. The spatial resolution and the response time of the camera also need to be improved. This can improve the correlation between numerical and experimental results.

Practical implications

One of the major factors attributed to the failure of sliding components is the frictional heating and the resulting flash temperatures at the sliding interface. However, it is not easy to measure such temperatures owing to the inherent difficulties in accessing the contact zone. Besides, thermal imaging techniques can be applied only with such tribo‐pairs where at least one of the contacting materials is transparent to IR radiation. In practice, such cases are a rarity. However, the good correlation observed between the numerical and experimental results in this work would give the practicing engineer a confidence to apply the numerical model directly and calculate contact temperatures for any tribo‐material pairs that are generally seen around.

Originality/value

A good correlation between the numerical and experimental results gives credence to the fact that the numerical model can be used to predict contact temperatures between any sliding tribo‐pairs.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 May 2019

Peter Prakash F., Muthukannan Duraiselvam, Natarajan S. and Kannan Ganesa Balamurugan

This paper aims to investigate the effect of laser surface texturing (LST) on the wear behavior of C-263 nickel-based superalloy and to identify the optimum wear operating…

Abstract

Purpose

This paper aims to investigate the effect of laser surface texturing (LST) on the wear behavior of C-263 nickel-based superalloy and to identify the optimum wear operating condition.

Design/methodology/approach

C-263 nickel-based superalloy was selected as substrate material and pico-second Nd-YAG laser was used to fabricate the waviness groove texture on their surface. Wear experiments were designed based on Box-Bhenken design with three factors of sliding velocity, sliding distance and applied load. Wear experiments were performed using pin on disc tribometer. Morphologies of textures and worn-out surfaces were evaluated by scanning electron microscopy and energy dispersive spectroscopy. Surface topographies and surface roughness of the textures were evaluated by weight light interferometry. The response surface methodology was adopted to identify the optimum wear operating condition and ANOVA to identify the significant factors.

Findings

LST improves the wear resistance of C-263 nickel-based superalloy by appeoximately 82 per cent. Higher wear rate occurs at maximum values of all operating conditions, and applied load affects the coefficient of friction. Applied load significantly affects the wear rate of un-textured specimen. The interaction of sliding velocity and applied load also affects the wear rate of textured specimens. The optimum parameters to get minimum wear rate for un-textured specimens are 1.5 m/s sliding velocity, 725 m sliding distance and 31 N of applied load. For textured specimens, the optimum values are 1.5 m/s sliding distance, 500 m sliding distance and 40 N of the applied load.

Originality/value

Literature on laser texturing on nickel-based superalloy is very scarce. Specifically, the effect of laser texturing on wear behavior of the nickel-based superalloy C-263 alloy is not yet reported.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Erol Feyzullahoğlu and Nehir Şakiroğlu

The purpose of this study is to develop new Al‐based bearing alloys which have better properties than classic commercial bearing materials and to analyze tribologic properties of…

Abstract

Purpose

The purpose of this study is to develop new Al‐based bearing alloys which have better properties than classic commercial bearing materials and to analyze tribologic properties of these alloys under dry sliding conditions experimentally.

Design/methodology/approach

Four different aluminium alloys were produced with casting method and tested on pin‐on‐disc wear testing machine. Friction coefficients and weight losses of the samples were determined under various working conditions in consequence of the experiments. Hardness, surface roughness, and surface temperatures of the samples were measured.

Findings

The results of the experiment show that friction coefficients vary by surface pressure and sliding speed. Al15Pb3.7Cu1.5Si1.1Fe and Al15Sn5Cu3Si alloys have lower friction coefficient values than other alloys. Al8.5Si3.5Cu alloy has the biggest wear resistance. Al15Pb3.7Cu1.5Si1.1Fe and Al15Sn5Cu3Si alloys are the most worn materials. Al8.5Si3.5Cu alloy has the lowest wear rate.

Research limitations/implications

When the comparison was done between commercial Al alloys and developed Al alloys in this study, it was seen that Al15Sn5Cu3Si and Al15Pb3.7Cu1.5Si1.1Fe alloys have lower friction coefficient values than other commercial alloys.

Practical implications

The effects of the elements except aluminium composing alloys upon tribologic properties were analyzed. Some of the alloy elements were seen to improve tribologic properties whereas some downgrade. When the results are evaluated, Al15Sn5Cu3Si and Al8.5Si3.5Cu alloys containing Si and Sn can be preferred among the aluminium alloys that will work under dry sliding.

Originality/value

This paper reveals new bearing materials. These alloys can be used in journal bearings.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Dawit Zenebe Segu and Pyung Hwang

– The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

509

Abstract

Purpose

The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

Design/methodology/approach

The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface.

Findings

The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions.

Originality/value

This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Hongbin Xuan and Gongjun Cui

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Abstract

Purpose

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Design/methodology/approach

The anti-wear Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared by powder metallurgy technique. The tribological behavior of Fe-Cr-B alloy sliding against ASTM 1045 steel pin is studied at 30-60 N and 0.03-0.12 m/s using a reciprocating pin-on-disk tribometer under dry sliding condition. Meanwhile, the ASTM 5140 and 3316 steel are studied as compared samples.

Findings

The friction coefficients of tested specimens increase with the increasing normal load. However, this effect is the opposite in case of different sliding speeds. The specific wear rates increase as the sliding speed and normal load increase. The Fe-Cr-B alloy shows the best tribological properties under the dry sliding condition and the wear mechanism is mainly ploughing.

Originality/value

This wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy can replace the traditional materials to process the sliding shoes and improve the service life of coal mining machine.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 May 2011

B.K. Prasad

The objectives of this paper are to assess the sliding wear response of a zinc‐based alloy over a range of sliding speeds and pressures in oil‐lubricated condition with respect to…

Abstract

Purpose

The objectives of this paper are to assess the sliding wear response of a zinc‐based alloy over a range of sliding speeds and pressures in oil‐lubricated condition with respect to a cast iron, to understand the role of different microconstituents in controlling the observed wear behaviour and to examine various operating material removal mechanisms.

Design/methodology/approach

Sliding wear tests have been carried out using a pin‐on‐disc machine in oil‐lubricated condition at different speeds and pressures. The wear response has been explained in terms of specific nature of various microconstituents of the specimen materials and substantiated through the characteristics of wear surfaces, subsurface regions and debris particles.

Findings

The wear rate increased with the sliding speed while load produced a mixed influence. Further, the friction coefficient and frictional heating were influenced by the test duration, load and speed in a mixed manner. Moreover, the zinc‐based alloy attained lower wear rate but higher friction coefficient than that of the cast iron while frictional heating followed a mixed trend.

Practical implications

The paper further establishes a zinc‐based alloy as a potential substitute material system to a well‐known cast iron in tribological applications and enables further understanding of the wear mechanisms.

Originality/value

The present paper assesses the sliding wear performance of a lighter zinc‐based alloy as an effective potential substitute material system to cast iron in tribological applications. An attempt has also been made to understand the role played by different microconstituents in controlling the wear behavior and substantiate the wear response through the characteristics of wear surfaces, subsurface regions and debris.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Yan Lu and Zuomin Liu

The purpose of this manuscript is to analyze the fusion micro-zone generated by typical rough surfaces and investigate the factors of thermal effects on the tribological…

Abstract

Purpose

The purpose of this manuscript is to analyze the fusion micro-zone generated by typical rough surfaces and investigate the factors of thermal effects on the tribological performance of surface asperities and its results verified by the experiment.

Design/methodology/approach

A three-dimensional fractal rough surfaces sliding contact model has been developed, which takes into account temperature rise and distribution. The finite-element method, Green's function method, thermal conduct theory and contact mechanics are used as the solution methods.

Findings

The results yield insights into the effects of the sliding velocity, thermal properties of the material, normal load and surface roughness on the temperature rise of the sliding contact surface. It allows the specification of working conductions' properties to reduce fusion.

Originality/value

The model is developed and described by using the features of the contact between one flat surface and one rough surface with varied topographies. It can be easily applied for solving the sliding contact problems with different working conditions and specified for designing the surface accuracy in the severe working condition.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Dawit Zenebe Segu and Pyung Hwang

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated…

Abstract

Purpose

This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications.

Design/methodology/approach

As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2.

Findings

The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting.

Originality/value

In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 7000