Search results

1 – 10 of over 11000
Article
Publication date: 12 August 2019

Waheed Ur Rehman, Jiang Guiyun, Luo Yuan Xin, Wang Yongqin, Nadeem Iqbal, Shafiq UrRehman and Shamsa Bibi

This paper’s aim is modeling and simulation of an advanced controller design for a novel mechatronics system that consists of a hydrostatic journal bearing with servo control. The…

Abstract

Purpose

This paper’s aim is modeling and simulation of an advanced controller design for a novel mechatronics system that consists of a hydrostatic journal bearing with servo control. The proposed mechatronic system has more worth in tribology applications as compared to the traditional hydrostatic bearing which has limited efficiency and poor performance because of lower stiffness and load-carrying capacity. The proposed mechatronic system takes advantage of active lubrication to improve stiffness, rotor’s stability and load-carrying capacity.

Design/methodology/approach

The current work proposes extended state observer-based controller to control the active lubrication for hydrostatic journal bearing. The advantage of using observer is to estimate unknown state variables and lumped effects because of unmodeled dynamics, model uncertainties, and unknown external disturbances. The effectiveness of the proposed mechatronic system is checked against the traditional hydrostatic bearing.

Findings

Proposed mechatronics active hydrostatic journal bearing system is checked against traditional hydrostatic journal bearing. It is found that novel active hydrostatic journal bearing with servo control has good tribology performance factors such as stiffness, less rotor vibration, no wear and friction under starting conditions and high load-carrying capacity under different conditions of spindle speed, temperature, initial oil pressure and external disturbance. The result shows that proposed mechatronics system has more worth in rotary tribology applications.

Originality/value

The current manuscript designs a novel active hydrostatic journal bearing system with servo control. The mathematical model has advantages in term of estimating unknown state variables and lumped effects because of unmodeled dynamics, model uncertainties and unknown external disturbances. The result shows improvement in dynamic characteristics of a hydrostatic journal bearing under different dynamic conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2021

Waheed Ur Rehman, Xinhua Wang, Yingchun Chen, Xiaogao Yang, Zia Ullah, Yiqi Cheng and Marya Kanwal

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing…

Abstract

Purpose

The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing algorithms.

Design/methodology/approach

Active lubrication has ability to overcome the unpredictable harsh environmental conditions which often lead to failure of capillary controlled traditional hydrostatic journal bearing. The research develops a mathematical model for a servo feedback-controlled hydrostatic journal bearing and dynamics of model is analyzed with different control techniques. The fractional-order PID control system is tuned by using particle swarm optimization and Nelder mead optimization techniques with the help of using multi-objective performance criteria.

Findings

The results of the current research are compared with previously published theoretical and experimental results. The proposed servo-controlled active bearing system is studied under a number of different dynamic situations and constraints of variable spindle speed, external load, temperature changes (viscosity) and variable bearing clearance (oil film thickness). The simulation results show that the proposed system has better performance in terms of controllability, faster response, stability, high stiffness and strong resistance.

Originality/value

This paper develops an accurate mathematical model for servo-controlled hydrostatic bearing with fractional order controller. The results are in excellent agreement with previously published literature.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0272

Article
Publication date: 20 April 2012

H.Y. Lau, K.P. Liu, P.L. Wong and Wen Wang

The purpose of this paper is to carry out a proof‐of‐concept experiment on positioning control of a smart journal bearing using giant magnetostrictive material (GMM)‐based…

Abstract

Purpose

The purpose of this paper is to carry out a proof‐of‐concept experiment on positioning control of a smart journal bearing using giant magnetostrictive material (GMM)‐based actuators.

Design/methodology/approach

In the system, a journal bearing integrated with GMM actuators is actively controlled using self‐tuning P control under PID algorithm.

Findings

With the aid of GMM actuators, the positioning performance of journal bearing system is enhanced. The results demonstrate that the smart bearing system is practical and that GMM is an excellent material for driving function.

Research limitations/implications

The smart bearing system can be applied to other types of machinery if new calibrations are done on both bearing and actuators.

Practical implications

The results prove the possibility of applying the smart bearing system to demanding industrial usages (high load capacity, control ability and stability at high speeds).

Originality/value

The idea of using GMM for the smart journal bearing is original and has not been mentioned in past literature.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 November 2022

Dongju Chen, Xuan Zhang, Ri Pan, Kun Sun and Jinwei Fan

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Abstract

Purpose

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Design/methodology/approach

In this research, a fluid–solid coupling model of the elastic throttling structure is established while considering the interaction between the elastic element and the flow field. The effects of elastic element structural parameters on the stiffness and load capacity of aerostatic radial bearing are then researched. Finally, the effect of elastic element modulus on air film load performance and elastic element deformation is analyzed.

Findings

The results indicate that the aerostatic radial bearing with elastic element can significantly improve the load capacity and stiffness when compared to the common aerostatic bearing. By choosing the proper combination of parameters, the load performance can be improved by at least 16%.

Originality/value

The throttling structure of aerostatic bearing is optimized in this work, which significantly enhances the load performance of the aerostatic bearing.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 August 2020

H. Girish and Raghuvir Pai

The purpose of this paper is to theoretically analyze an innovative form of variable bearing configuration having four pads with unique adjustability principle operated under…

Abstract

Purpose

The purpose of this paper is to theoretically analyze an innovative form of variable bearing configuration having four pads with unique adjustability principle operated under journal misaligned conditions. The parameters such as load positions, degrees of misalignment (DM) and pad adjustment configurations influencing the steady-state performance of the four-pad adjustable bearing are detailed in this paper.

Design/methodology/approach

The proposed adjustable pad geometry possesses the ability to undergo radial and tilt motions in both inward and outward directions. Analysis is carried out by considering journal misalignment in vertical and horizontal planes with bearing modelled for load-on-pad and load-between-pad configurations. The film thickness equation derived to incorporate the radial and tilt adjustment parameters is further modified to accommodate the different load orientations and misaligned journal conditions. The pressure field equation is solved by applying finite-difference technique combined with Gauss Siedel iterative method.

Findings

At higher DM, peak pressures generated in the minimum film thickness region near the pad ends highly influences the bearing load carrying capacity. Results indicated that the adjustable four-pad bearing geometry is highly efficient in withstanding the journal misalignment by radially displacing and tilting the four pads in negative directions.

Originality/value

For bearing designers, this research highlights the importance of considering the misalignment factor during the design stages of an adjustable journal bearing. The proposed adjustability concept is proven to be effective enough to improve the bearing performance and, in turn, withstand the journal misalignment.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Qing Liu, Li Wang and Ming Feng

This paper aims to study the clearance compatibility of active magnetic bearing (AMB) and gas bearing (GB) to achieve a single-structured hybrid gas-magnetic bearing (HGMB), which…

Abstract

Purpose

This paper aims to study the clearance compatibility of active magnetic bearing (AMB) and gas bearing (GB) to achieve a single-structured hybrid gas-magnetic bearing (HGMB), which uses a single bearing structure to realize both the functions of gas bearing and magnetic bearing.

Design/methodology/approach

Because the radial clearance size of the AMB is typically ten times larger than that of the GB, radial clearance compatibility of GB and AMB needs to maximize the radial clearance of GB by adjusting structural parameters. Parametric analysis of structural parameters of GB is explored. Furthermore, a general structural design principle based on static analysis, rotordynamic performance and system stability is established for the single-structured HGMB.

Findings

Load capacity is vastly reduced due to the enlarged radial clearance of the GB. A minimum clearance needs to be ensured by increasing the bearing diameter or width to compensate for the reduced load capacity, yet indirectly raising the bearing load. Increased bearing load is conducive to stability, yet it raises the risk of rotor abrasion. In addition, excessively large bearing diameter leads to system instability, and inappropriate bearing width affects critical speeds. A general structural design principle is established and the designed HGMB–rotor processes optimal performances.

Originality/value

A single-structured HGMB is proposed to address the urgent demand for high-speed, cryogenic turboexpanders with frequent starts/stops. This design applies a single-bearing structure to realize the characteristics of both GB and AMB, greatly simplifying the implementation, reducing air friction loss and raising critical speeds. This paper provides a fresh perspective on the development of cryogenic turboexpanders for hydrogen liquefaction. It theoretically validates the feasibility and provides a design guide for a single-structured HGMB system.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4363

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Reza Ebrahimi, Mostafa Ghayour and Heshmatallah Mohammad Khanlo

This paper aims to present bifurcation analysis of a magnetically supported coaxial rotor model in auxiliary bearings, which includes gyroscopic moments of disks and geometric…

Abstract

Purpose

This paper aims to present bifurcation analysis of a magnetically supported coaxial rotor model in auxiliary bearings, which includes gyroscopic moments of disks and geometric coupling of the magnetic actuators.

Design/methodology/approach

Ten nonlinear equations of motion were solved using the Runge–Kutta method. The vibration responses were analyzed using dynamic trajectories, power spectra, Poincaré maps, bifurcation diagrams and the maximum Lyapunov exponent. The analysis was carried out for different system parameters, namely, the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position.

Findings

It was shown that dynamics of the system could be significantly affected by varying these parameters, so that the system responses displayed a rich variety of nonlinear dynamical phenomena, including quasi-periodicity, chaos and jump. Next, some threshold values were provided with regard to the design of appropriate parameters for this system. Therefore, the proposed work can provide an effective means of gaining insights into the nonlinear dynamics of coaxial rotor–active magnetic bearing systems with auxiliary bearings in the future.

Originality/value

This paper considered the influences of the inner shaft stiffness, inter-rotor bearing stiffness, auxiliary bearing stiffness and disk position on the bifurcation behavior of a magnetically supported coaxial rotor system in auxiliary bearings.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 August 2022

Yanling Zhao and Chuanwang Wu

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the…

Abstract

Purpose

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the rotational speed and number of rolling elements on the rolling element collision and skidding.

Design/methodology/approach

Based on Hertzian theory and tribological theory, the collision contact model of the rolling element was established. Based on the proposed model, the differential equations of motion of the two degrees of freedom rolling element were constructed. The fourth-order Adams algorithm solved the collision contact force between the rolling elements. The sliding velocity between the rolling element and the inner and outer races was calculated.

Findings

The collision frequency and slip of rolling elements can be reduced by increasing the rotational speed appropriately and reducing the number of rolling elements by one.

Originality/value

The developed model can reveal the collision and slip characteristics of the rolling elements for cageless bearings. This study can provide theoretical guidance for the design and manufacture of cageless ball bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 July 2024

Yinsi Chen, Yuan Li, Heng Liu and Yi Liu

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Abstract

Purpose

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Design/methodology/approach

An asymmetric rotor-bearing test rig was set up for the identification experiment. Comparations were made between the measured response of the asymmetric rotor and the symmetric rotor. The mathematical model of the asymmetric rotor is established by the finite element method. The identification algorithm is based on the model of the rotor and the measured vibration response to identify bearing parameters. The influence of modeling error and measurement noise on the identification results are numerically analyzed. The dynamic parameters of the journal bearings under different rotational speeds are identified and compared with the theoretical values calculated by the perturbation method.

Findings

The experiment results show that the vibration characteristics of the asymmetric rotor and the symmetric rotor are different. The numerical evaluation of the identification algorithm shows that the algorithm is accurate and has good robustness to modeling error and measurement noise. The identified dynamic parameters agree reasonably well with the parameters derived from the theoretical bearing model.

Originality/value

The proposed identification method uses the unique vibration characteristics of asymmetric rotors to identify the bearing dynamic parameters. As the method does not require excitations or additional test runs, it is suitable for the field test.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0096/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 11000