Search results

1 – 10 of over 30000
Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2019

Juliang Xiao, Fan Zeng, Qiulong Zhang and Haitao Liu

This paper aims to propose a forcefree control algorithm that is based on a dynamic model with full torque compensation is proposed to improve the compliance and flexibility of…

Abstract

Purpose

This paper aims to propose a forcefree control algorithm that is based on a dynamic model with full torque compensation is proposed to improve the compliance and flexibility of the direct teaching of cooperative robots.

Design/methodology/approach

Dynamic parameters identification is performed first to obtain an accurate dynamic model. The identification process is divided into two steps to reduce the complexity of trajectory simplification, and each step contains two excitation trajectories for higher identification precision. A nonlinear friction model that considers the angular displacement and angular velocity of joints is proposed as a secondary compensation for identification. A torque compensation algorithm that is based on the Hogan impedance model is proposed, and the torque obtained by an impedance equation is regarded as the command torque, which can be adjusted. The compensatory torque, including gravity torque, inertia torque, friction torque and Coriolis torque, is added to the compensation to improve the effect of forcefree control.

Findings

The model improves the total accuracy of the dynamic model by approximately 20% after compensation. Compared with the traditional method, the results prove that the forcefree control algorithm can effectively reduce the drag force approximately 50% for direct teaching and realize a flexible and smooth drag.

Practical implications

The entire algorithm is verified by the laboratory-developed six degrees-of-freedom cooperative robot, and it can be applied to other robots as well.

Originality/value

A full torque compensation is performed after parameters identification, and a more accurate forcefree control is guaranteed. This allows the cooperative robot to be dragged more smoothly without external sensors.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2021

Wang Jianhong

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole identification

Abstract

Purpose

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole identification process. According to the constructed flutter stochastic model with observed noises, separable least squares identification and set membership identification are proposed to identify those unknown model parameters for statistical noise and unknown but bounded noise, respectively. The common trace operation with respect to the asymptotic variance matrix is minimized to solve the power spectral for the optimal input signal in the framework of statistical noise. Moreover, for the unknown bout bounded noise, the radius of information, corresponding to the established parameter uncertainty interval, is minimized to give the optimal input signal.

Design/methodology/approach

First, model identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter statistical model with statistical noise, separable least squares identification is proposed to identify the unknown model parameters, then the optimal input signal is designed to satisfy one given performance function. Third, for aircraft flutter model with unknown but bounded noise, set membership identification is proposed to solve the parameter set for each unknown model parameter. Then, the optimal input signal is designed by applying the idea of the radius of information with unknown but bounded noise.

Findings

This aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Then identification strategy and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise and unknown but bounded noise, respectively.

Originality/value

To the best knowledge of the authors, this problem of the model parameter identification for aircraft flutter was proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes two novel identification strategies and opens a new subject about optimal input signal design for statistical noise and unknown noise, respectively.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Book part
Publication date: 16 September 2022

Pedro Brinca, Nikolay Iskrev and Francesca Loria

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of

Abstract

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.

Details

Essays in Honour of Fabio Canova
Type: Book
ISBN: 978-1-80382-636-3

Keywords

Book part
Publication date: 22 November 2012

Denis Tkachenko and Zhongjun Qu

The chapter considers parameter identification, estimation, and model diagnostics in medium scale DSGE models from a frequency domain perspective using the framework developed in…

Abstract

The chapter considers parameter identification, estimation, and model diagnostics in medium scale DSGE models from a frequency domain perspective using the framework developed in Qu and Tkachenko (2012). The analysis uses Smets and Wouters (2007) as an illustrative example, motivated by the fact that it has become a workhorse model in the DSGE literature. For identification, in addition to checking parameter identifiability, we derive the non-identification curve to depict parameter values that yield observational equivalence, revealing which and how many parameters need to be fixed to achieve local identification. For estimation and inference, we contrast estimates obtained using the full spectrum with those using only the business cycle frequencies to find notably different parameter values and impulse response functions. A further comparison between the nonparametrically estimated and model implied spectra suggests that the business cycle based method delivers better estimates of the features that the model is intended to capture. Overall, the results suggest that the frequency domain based approach, in part due to its ability to handle subsets of frequencies, constitutes a flexible framework for studying medium scale DSGE models.

Details

DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments
Type: Book
ISBN: 978-1-78190-305-6

Keywords

Article
Publication date: 17 July 2019

Youshuang Ding, Xi Xiao, Xuanrui Huang and Jiexiang Sun

This paper aims to propose a novel system identification and resonance suppression strategy for motor-driven system with high-order flexible manipulator.

Abstract

Purpose

This paper aims to propose a novel system identification and resonance suppression strategy for motor-driven system with high-order flexible manipulator.

Design/methodology/approach

In this paper, first, a unified mathematical model is proposed to describe both the flexible joints and the flexible link system. Then to suppress the resonance brought by the system flexibility, a model based high-order notch filter controller is proposed. To get the true value of the parameters of the high-order flexible manipulator system, a fuzzy-Kalman filter-based two-step system identification algorithm is proposed.

Findings

Compared to the traditional system identification algorithm, the proposed two-step system identification algorithm can accurately identify the unknown parameters of the high order flexible manipulator system with high dynamic response. The performance of the two-step system identification algorithm and the model-based high-order notch filter is verified via simulation and experimental results.

Originality/value

The proposed system identification method can identify the system parameters with both high accuracy and high dynamic response. With the proposed system identification and model-based controller, the positioning accuracy of the flexible manipulator can be greatly improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 March 2022

Wang Jianhong

The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely used…

Abstract

Purpose

The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely used in today’s practice, a closed-loop stochastic model of the aircraft flutter test is constructed to model the aircraft flutter process, whose input–output signals are all corrupted by the observed noises. Through using a rational transfer function, the equivalent property between the aircraft flutter model parameters and polynomial coefficients is established, and then the problem of aircraft flutter model parameters identification is turned to one closed-loop identification problem. An iterative identification algorithm is proposed to identify the unknown polynomial coefficients, being benefit for the latter flutter model parameter identification. Furthermore, as the closed-loop output corresponds to the flutter amplitude, so from the point of the minimization with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.

Design/methodology/approach

First, model parameter identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter closed-loop statistical model with statistical noise, an iterative identification algorithm is proposed to identify the unknown model parameters. Third, from the point of minimizing with respect to the variance of the closed-loop output, the optimal input signal and optimal feedback controller are all derived to achieve the zero flutter, respectively, for example, the optimal input spectrum and the detailed form for optimal feedback controller.

Findings

This aircraft flutter model corresponds to one closed-loop stochastic model, whose input signal and output are corrupted by external noises. Then, identification algorithm and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise, respectively. It means the optimal input signal and optimal feedback controller are useful for the aircraft flutter model parameter identification within the constructed new closed-loop stochastic model.

Originality/value

To the best of the authors’ knowledge, this problem of the model parameter identification for aircraft flutter is proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes a new closed-loop stochastic model to construct the aircraft flutter test, and some related topics are considered about this closed-loop identification for aircraft flutter model parameter identification in the framework of closed-loop condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 2 May 2017

Qiang Xue and Duan Haibin

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO…

Abstract

Purpose

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO) algorithm, with the objective of overcoming the disadvantages of traditional methods based on gradient such as New Raphson method, especially in noisy environment.

Design/methodology/approach

The model of hypersonic vehicles and PIO algorithm is established for aerodynamic parameter identification. Using the idea, identification problem will be converted into the optimization problem.

Findings

A new swarm optimization method, PIO algorithm is applied in this identification process. Experimental results demonstrated the robustness and effectiveness of the proposed method: it can guarantee accurate identification results in noisy environment without fussy calculation of sensitivity.

Practical implications

The new method developed in this paper can be easily applied to solve complex optimization problems when some traditional method is failed, and can afford the accurate hypersonic parameter for control rate design of hypersonic vehicles.

Originality/value

In this paper, the authors converted this identification problem into the optimization problem using the new swarm optimization method – PIO. This new approach is proved to be reasonable through simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 30000