Search results

1 – 10 of over 7000
Article
Publication date: 7 January 2019

Jiandong Wei, Manyu Guan, Qi Cao and Ruibin Wang

The purpose of this paper is to analyze the cable-supported bridges more efficiently by building the finite element model with the spatial combined cable element.

Abstract

Purpose

The purpose of this paper is to analyze the cable-supported bridges more efficiently by building the finite element model with the spatial combined cable element.

Design/methodology/approach

The spatial combined cable element with rigid arms and elastic segments was derived. By using the analytical solution of the elastic catenary to establish the flexibility matrix at the end of the cable segment and adding it to the flexibility matrix at the ends of the two elastic segments, the flexibility matrix at the end of the cable body is obtained. Then the stiffness matrix of the cable body is established and the end force vector of cable body is given. Using the displacement transformation relationship between the two ends of the rigid arm, the stiffness matrix of the combined cable element is derived. By assigning zero to the length of the elastic segment(s) or/and the rigid arm(s), many subdivisions of the combined cable element can be obtained, even the elastic catenary element.

Findings

The examples in this field and specially designed examples proved the correctness of the proposed spatial combined cable element.

Originality/value

The combined cable element proposed in this study can be used for the design and analysis of cable-stayed bridges. Case studies show that it is able to simulate cable accurately and could also be used to simulate the suspenders in arch bridges as well in suspension bridges.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2022

Dongju Chen, Xuan Zhang, Ri Pan, Kun Sun and Jinwei Fan

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Abstract

Purpose

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Design/methodology/approach

In this research, a fluid–solid coupling model of the elastic throttling structure is established while considering the interaction between the elastic element and the flow field. The effects of elastic element structural parameters on the stiffness and load capacity of aerostatic radial bearing are then researched. Finally, the effect of elastic element modulus on air film load performance and elastic element deformation is analyzed.

Findings

The results indicate that the aerostatic radial bearing with elastic element can significantly improve the load capacity and stiffness when compared to the common aerostatic bearing. By choosing the proper combination of parameters, the load performance can be improved by at least 16%.

Originality/value

The throttling structure of aerostatic bearing is optimized in this work, which significantly enhances the load performance of the aerostatic bearing.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1987

T.K. Hellen and W.S. Blackburn

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are…

Abstract

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are reviewed, classified broadly into two groups, as domain integrals and virtual crack extension techniques. In addition to considerations of how such quantities may be calculated by finite elements, assessment methods of conducting the actual incremental analyses are described.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 11 September 2019

Ahmed M. Ellakany, Mohamad Ali, Mohamed A. El-Gohary and Mohamed Elkholy

The purpose of this paper is to introduce a numerical model to investigate static response of elastic steel-concrete beams. The numerical model is based on the lumped system with…

Abstract

Purpose

The purpose of this paper is to introduce a numerical model to investigate static response of elastic steel-concrete beams. The numerical model is based on the lumped system with the combination of the transfer matrix and the analog beam methods (ABM). The beams are composed of an upper concrete slab and a lower steel beam, connected at the interface by shear transmitting studs. This type of beam is widely used in constructions especially for highway bridges. The static field and point transfer matrices for the element of the elastic composite beam are derived. The present model is verified and is applied to study the static response of elastic composite beams with intermediate conditions. The intermediate condition is considered as an elastic support with various values of stiffness. The elastic support can be considered rigid when the stiffness has very high values. The influence effect of shear stiffness between the upper slab and lower beam, and the end shear restraint on the static behavior of the composite beams is studied. In addition, the change in the stiffness of the elastic support is also highlighted.

Design/methodology/approach

The objective of this study is to introduce a numerical model based on lumped system to calculate the static performance of elastic composite bridge beams having intermediate elastic support by combining the ABM with the transfer matrix method (TMM). The developed model is applicable for studying static and dynamic responses of steel-concrete elastic composite beams with different end conditions taking into account the effect of partial shear interactions. The validity of the lumped mass model is checked by comparing its results with a distributed model and good agreements are achieved (Ellakany and Tablia, 2010).

Findings

A model based on the lumped system of the elastic composite steel-concrete bridge beam with intermediate elastic support under static load is presented. The model takes into consideration the effect of the end shear restraint together with the interaction between the upper slab and the lower beam. Combining the analogical beam method with the TMM and analyzing the behavior of the elastic composite beam in terms of shear studs and stiffness, the following outcomes can be drawn: end shear restraint and stiffness of the shear layer are the two main factors affecting the response of elastic composite beams in terms of both the deflection and the moments. Using end shear restraint reduces the deflection extensively by about 40 percent compared to if it is not used assuming that: there is no interaction between the upper slab and the lower beam and the beam is acting as simply supported. As long as the shear layer stiffness increases or interaction exists, the deflection decreases. This reduced rate in deflection is smaller in case of existence of end shear restraint. The effect of the end shear restraint is more prevailing on reducing the deflections in case of partial interactions. However, its effect completely diminishes in case of complete interaction. Presence of the end shear restraint and shear layer stiffness produces almost the same variations in the components of the bending moments of the composite beam. Finally, for a complete interaction, comparing the case of using end shear restraint or the case without it, the differences in the values of the deflections and moments are almost negligible.

Research limitations/implications

The following assumptions related to the theory of ABM: shear studs connecting both sub-beams are modeled as a thin shear layer, each sub-beam has the same vertical displacement and the shear deformation in the sub-beams is neglected.

Practical implications

The developed model can be effectively used for a quick estimation of the dynamic responses of elastic composite beams in real life rather than utilizing complicated numerical models.

Social implications

The applications of this model can be further extended for studying the behavior of complex bridge beams that will guarantee the safety of the public in a quick view.

Originality/value

Previous models combined the TMM with the ABM for studying the static and free-vibration behaviors of elastic composite beams assuming that the field element is subjected to a distributed load. To study the dynamic response of elastic composite beams subjected to different moving loads using transfer matrix ABM, it was essential to use a massless field element and concentrate the own weight of the beam at the point element. This model is considered a first step for studying the impact factors of elastic composite beams subjected to moving loads.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 June 2019

I St Doltsinis

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to…

Abstract

Purpose

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to both, the applicability of existing approaches and the advancement of concepts. This paper aims to explore in the context of linear elasticity the substitution of the simplex tetrahedral element in space and the triangle in the plane by corresponding spring cells deduced on a flexibility basis using the natural formalism.

Design/methodology/approach

The natural formalism is characterized by the homogeneous definition of strain and stress along the lines connecting nodes of the simplex tetrahedron and the triangle. The elastic compliance involves quantities along the prospective spring directions and offers itself for the transition to the spring cell. The diagonal entities are interpreted immediately as spring flexibilities, the off-diagonal terms account for the completeness of the substitution. In addition to the isotropic elastic material, the concept is discussed for anisotropic elasticity in the plane.

Findings

The natural point of view establishes the spring cell as part of the continuum element. The simplest configuration of pin-joined bars discards all geometrical and physical cross effects. The approach is attracting by its transparent simplicity, revealing deficiencies of the spring cell and identifying directly conditions for the complete substitution of the finite element.

Research limitations/implications

The spring cell counterparts of the tetrahedral- and the triangular finite elements allow employment in problems in three and two dimensions. However, the deficient nature of the approximation requires attention in the design of the discretization lattice such that the conditions of complete finite element substitution are approached as close as possible.

Practical implications

Apart from plane geometries, triangular spring cells have been assembled to lattice models of space structures such as membrane shells and similar. Tetrahedral cells have been used, in modelling plates and shell structures exhibiting bending stiffness.

Originality/value

The natural formalism of simplex finite elements in three and two dimensions is used for defining spring cells on a flexibility basis and exploring their properties. This is a novel approach to spring cells and an original employment of the natural concept in isotropic and anisotropic elasticity.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2020

Rui Dan and Zhen Shi

Objective appraisal of pressure comfort is the key point of optimal designing of clothing. The purpose of this paper is to study a new method to provide pressure comfort for the…

Abstract

Purpose

Objective appraisal of pressure comfort is the key point of optimal designing of clothing. The purpose of this paper is to study a new method to provide pressure comfort for the waist of elastic pantyhose through the relationship between pressure and displacement using the finite element method (FEM).

Design/methodology/approach

This paper presented a simulation model of the waist cross section consisting of three parts, namely skin, soft tissue and lumbar vertebrae, respectively, according to CT scan. The finite element the model of waist cross-section was established using Mimics software. The pressure–displacement quadratic equation can be obtained using ANSYS software and fitting curves. Meanwhile, we divide the waist cross-section into 12 equal regions according to angle, and then the area shrinkage mass of the waist cross-section can be calculated, respectively.

Findings

In this research work, we got the displacement distribution trend of elastic pantyhose at the waist cross section according to the area shrinkage mass of 12 regions, and this displacement could be used as an objective evaluation index for pressure comfort. All these solutions supply a theoretical reference for optimal design of the women's elastic pantyhose.

Originality/value

The paper analyzed the relationship between pressure and displacement for the waist of elastic pantyhose using FEM, and then got the displacement distribution trend of elastic pantyhose at the waist cross section according to the area shrinkage mass of different regions. It can supply a new method to appraise pressure comfort.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2016

Richard Regueiro, Zheng Duan and Beichuan Yan

– The purpose of this paper is to develop a concurrent multiscale computational method for granular materials in the quasi-static loading regime.

Abstract

Purpose

The purpose of this paper is to develop a concurrent multiscale computational method for granular materials in the quasi-static loading regime.

Design/methodology/approach

Overlapped-coupling between a micropolar linear elastic one-dimensional (1D) mixed finite element (FE) model and a 1D chain of Hertzian nonlinear elastic, glued, discrete element (DE) spheres is presented. The 1D micropolar FEs and 1D chain of DEs are coupled using a bridging-scale decomposition for static analysis.

Findings

It was found that an open-window DE domain may be coupled to a micropolar continuum FE domain via an overlapping region within the bridging-scale decomposition formulation for statics. Allowing the micropolar continuum FE energy in the overlapping region to contribute to the DE energy has a smoothing effect on the DE response, especially for the rotational degrees of freedom (dofs).

Research limitations/implications

The paper focusses on 1D examples, with elastic, glued, DE spheres, and a linear elastic micropolar continuum implemented in 1D.

Practical implications

A concurrent computational multiscale method for granular materials with open-window DE resolution of the large shearing region such as at the interface with a penetrometer skin, will allow more efficient computations by reducing the more costly DE domain calculations, but not at the expense of generating artificial boundary effects between the DE and FE domains.

Originality/value

Open-window DE overlapped-coupling to FE continuum domain, accounting for rotational dofs in both DE and FE methods. Contribution of energy from micropolar FE in overlap region to underlying DE particle energy.

Article
Publication date: 2 October 2018

Fenglei Ni, Tianhui Li, Yiwei Liu, Hong Liu, Yang Li, Liangliang Zhao and Zhaopeng Chen

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong…

Abstract

Purpose

The purpose of this paper is to study the dynamic modeling and controller design for the series element actuator (SEA) joints. The robot equipped with SEA joints is a strong coupling, nonlinear, highly flexible system, which can prevent itself from damaging by the accidental impact and the people to be injured by the robot.

Design/methodology/approach

Based on the torque source model, the authors built a dynamic model for the SEA joint. To improve the accuracy of this model, the authors designed an elastic element into the joint and implemented the vector control for the joint motor. A control method of combined PD controller and back-stepping was proposed. Moreover, the torque control could be transformed into position control by stiffness transformation.

Findings

The established model and the proposed method are verified by the position and torque control experiments. The experimental results show that the dynamic model of the SEA joint is accurate and the proposed control strategies for the SEA joint are reasonable and feasible.

Originality/value

The main contribution of the paper is as follows: designing an elastic element with high linearity to improve the model accuracy of the SEA joint. The control strategy-based back-stepping method for the SEA joint is proposed to increase the robustness of the controller.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 7000