Search results

1 – 10 of over 7000
Article
Publication date: 1 September 2005

David Page, Andreas Koschan, Sophie Voisin, Ngozi Ali and Mongi Abidi

Investigate the use of two imaging‐based methods – coded pattern projection and laser‐based triangulation – to generate 3D models as input to a rapid prototyping pipeline.

1289

Abstract

Purpose

Investigate the use of two imaging‐based methods – coded pattern projection and laser‐based triangulation – to generate 3D models as input to a rapid prototyping pipeline.

Design/methodology/approach

Discusses structured lighting technologies as suitable imaging‐based methods. Two approaches, coded‐pattern projection and laser‐based triangulation, are specifically identified and discussed in detail. Two commercial systems are used to generate experimental results. These systems include the Genex Technologies 3D FaceCam and the Integrated Vision Products Ranger System.

Findings

Presents 3D reconstructions of objects from each of the commercial systems.

Research limitations/implications

Provides background in imaging‐based methods for 3D data collection and model generation. A practical limitation is that imaging‐based systems do not currently meet accuracy requirements, but continued improvements in imaging systems will minimize this limitation.

Practical implications

Imaging‐based approaches to 3D model generation offer potential to increase scanning time and reduce scanning complexity.

Originality/value

Introduces imaging‐based concepts to the rapid prototyping pipeline.

Details

Assembly Automation, vol. 25 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 March 2016

Tao Liu, Zhixiang Fang, Qingzhou Mao, Qingquan Li and Xing Zhang

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to…

Abstract

Purpose

The spatial feature is important for scene saliency detection. Scene-based visual saliency detection methods fail to incorporate 3D scene spatial aspects. This paper aims to propose a cube-based method to improve saliency detection through integrating visual and spatial features in 3D scenes.

Design/methodology/approach

In the presented approach, a multiscale cube pyramid is used to organize the 3D image scene and mesh model. Each 3D cube in this pyramid represents a space unit similar to a pixel in the image saliency model multiscale image pyramid. In each 3D cube color, intensity and orientation features are extracted from the image and a quantitative concave–convex descriptor is extracted from the 3D space. A Gaussian filter is then used on this pyramid of cubes with an extended center-surround difference introduced to compute the cube-based 3D scene saliency.

Findings

The precision-recall rate and receiver operating characteristic curve is used to evaluate the method and other state-of-art methods. The results show that the method used is better than traditional image-based methods, especially for 3D scenes.

Originality/value

This paper presents a method that improves the image-based visual saliency model.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 June 2012

Mohammad Vaezi, Chee Kai Chua and Siaw Meng Chou

Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging…

1227

Abstract

Purpose

Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging systems, as images are not layered and are of lower quality as compared to those of computerized tomography (CT) and magnetic resonance imaging (MRI), the process for making physical models requires a series of intermediate processes and it is a challenge to fabricate a model using ultrasound images due to the inherent limitations of the ultrasound imaging process. The purpose of this paper is to make high quality, physical models from medical ultrasound images by combining modern image processing methods and RP technology.

Design/methodology/approach

A novel and effective semi‐automatic method was developed to improve the quality of 2D image segmentation process. In this new method, a partial histogram of 2D images was used and ideal boundaries were obtained. A 3D model was achieved using the exact boundaries and then the 3D model was converted into the stereolithography (STL) format, suitable for RP fabrication. As a case study, the foetus was chosen for this application since ultrasonic imaging is commonly used for foetus imaging so as not to harm the baby. Finally, the 3D Printing (3DP) and PolyJet processes, two types of RP technique, were used to fabricate the 3D physical models.

Findings

The physical models made in this way proved to have sufficient quality and shortened the process time considerably.

Originality/value

It is still a challenge to fabricate an exact physical model using ultrasound images. Current commercial histogram‐based segmentation method is time‐consuming and results in a less than optimum 3D model quality. In this research work, a novel and effective semi‐automatic method was developed to select the threshold optimum value easily.

Details

Rapid Prototyping Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2023

Wen Pin Gooi, Pei Ling Leow, Jaysuman Pusppanathan, Xian Feng Hor and Shahrulnizahani Mohammad Din

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed…

Abstract

Purpose

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed around a cylindrical chamber, the planar ECT sensor has been investigated for depth and defect detection. However, the planar ECT sensor has limited height and depth sensing capability due to its single-sided assessment with the use of only a single-plane design. The purpose of this paper is to investigate a dual-plane miniature planar 3D ECT sensor design using the 3 × 3 matrix electrode array.

Design/methodology/approach

The sensitivity map of dual-plane miniature planar 3D ECT sensor was analysed using 3D visualisation, the singular value decomposition and the axial resolution analysis. Then, the sensor was fabricated for performance analysis based on 3D imaging experiments.

Findings

The sensitivity map analysis showed that the dual-plane miniature planar 3D ECT sensor has enhanced the height sensing capability, and it is less ill-posed in 3D image reconstruction. The dual-plane miniature planar 3D ECT sensor showed a 28% improvement in reconstructed 3D image quality as compared to the single-plane sensor set-up.

Originality/value

The 3 × 3 matrix electrode array has been proposed to use only the necessary electrode pair combinations for image reconstruction. Besides, the increase in number of electrodes from the dual-plane sensor setup improved the height reconstruction of the test sample.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 October 2006

Christine Connolly

To explore the phenomenon of stereoscopic vision and its exploitation in engineering and other professional applications, and in entertainment.

Abstract

Purpose

To explore the phenomenon of stereoscopic vision and its exploitation in engineering and other professional applications, and in entertainment.

Design/methodology/approach

Starts with a review of how stereo vision works, and the techniques used in 3D movies to present the illusion of depth and movement at right angles to the screen. Looks at some engineering products that build on these techniques, and then at the development of 3D television, based on a different image separation method. Finally looks at developments in stereo machine vision.

Findings

A variety of techniques exist to present left and right views of a scene to the correct eyes and stimulate 3D perception: for example, light‐filtering, alternate‐frame sequencing and optical separation. Fatigue occurs when there is crosstalk between those images, or when the images are presented at too low a frame rate. Many computer modelling software providers produce programs with 3D‐viewing capability for professional engineers. There are some exciting recent developments, such as add‐on PC stereo systems, and 3D TV.

Originality/value

Makes the general scientist aware of the wide range of professional uses of stereo vision, and of the engineering challenges behind 3D film and television.

Details

Sensor Review, vol. 26 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 May 2018

Juliana Sampaio Álvares, Dayana Bastos Costa and Roseneia Rodrigues Santos de Melo

The purpose of this paper is to present an exploratory study which aims to assess the potential use of 3D mapping of buildings and construction sites using unmanned aerial system…

679

Abstract

Purpose

The purpose of this paper is to present an exploratory study which aims to assess the potential use of 3D mapping of buildings and construction sites using unmanned aerial system (UAS) imagery for supporting the construction management tasks.

Design/methodology/approach

The case studies were performed in two different residential construction projects. The equipment used was a quadcopter equipped with digital camera and GPS that allow for the registry of geo-referenced images. The Pix4D Mapper and PhotoScan software were used to generate the 3D models. The study sought to examine three main constructs related to the 3D mapping developed: the easiness of development, the quality of the models in accordance with the proposed use and the usefulness and limitations of the mapping for construction management purposes.

Findings

The main contributions of this study include a better understanding of the development process of 3D mapping from UAS imagery, the potential uses of this mapping for construction management and the identification of barriers and benefits related to the application of these emerging technologies for the construction industry.

Originality/value

The importance of the study is related to the initiative to identify and evaluate the potential use of 3D mapping from UAS imagery, which can provide a 3D view of the construction site from different perspectives, for construction management tasks applications, trying to bring positive contributions to this knowledge area.

Details

Construction Innovation, vol. 18 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 September 2004

Xiangyang Ju, J. Paul Siebert, Nigel J.B. McFarlane, Jiahua Wu, Robin D. Tillett and Charles Patrick Schofield

We have succeeded in capturing porcine 3D surface anatomy in vivo by developing a high‐resolution stereo imaging system. The system achieved accurate 3D shape recovery by matching…

Abstract

We have succeeded in capturing porcine 3D surface anatomy in vivo by developing a high‐resolution stereo imaging system. The system achieved accurate 3D shape recovery by matching stereo pair images containing only natural surface textures at high (image) resolution. The 3D imaging system presented for pig shape capture is based on photogrammetry and comprises: stereo pair image acquisition, stereo camera calibration and stereo matching and surface and texture integration. Practical issues have been addressed, and in particular the integration of multiple range images into a single 3D surface. Robust image segmentation successfully isolated the pigs within the stereo images and was employed in conjunction with depth discontinuity detection to facilitate the integration process. The capture and processing chain is detailed here and the resulting 3D pig anatomy obtained using the system presented.

Details

Sensor Review, vol. 24 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 April 2007

Zubair Ahmed Memon, Muhd Zaimi Abd. and Mushairry Mustaffar

This main purpose of this study is to summarize the experience at the Construction Technology and Management Center (CTMC) to develop a Digitalizing Construction Monitoring (DCM…

1152

Abstract

Purpose

This main purpose of this study is to summarize the experience at the Construction Technology and Management Center (CTMC) to develop a Digitalizing Construction Monitoring (DCM) system by integrating 3DAutoCAD drawings and digital images. The objective of this paper is to propose a framework model for the DCM system and discuss in detail the steps involved for developing and calculating the 3D coordinate values from 2D digital images.

Design/methodology/approach

As digital images are one of the major sources of information from site, the process of measuring the project progress from images is quite challenging. This study used Photogrammetry techniques to extract the information from digital images, which can be concisely defined as the science of calculating 3D object coordinates from images, with PhotoModeler pro‐version software. Issues pertaining to the quality of the 3D model derived from 2D digital images are also discussed.

Findings

A framework model for DCM was proposed and different phases were discussed. A pilot case study on Larkin Mosque Car Parking Project was conducted to check the validity of using Photogrammetry techniques to extract 3D coordinate values by using PhotoModeler Software. Preliminary results show that significant control has been achieved to extract 3D coordinate values from 2D digital images, which and can be integrated into the digitalized system to automate the construction project monitoring process.

Originality/value

The techniques discussed in this paper are used for monitoring the project progress systematically. The results of this study will be incorporated to develop a fully automated project progress monitoring system, which can be updated automatically as the project progresses automatically.

Details

Construction Innovation, vol. 7 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 10 June 2014

Radosław Wajman and Robert Banasiak

The purpose of this paper is to introduce a significant modification of the sensitivity maps calculation process using electric field distribution analysis. A sensitivity matrix…

Abstract

Purpose

The purpose of this paper is to introduce a significant modification of the sensitivity maps calculation process using electric field distribution analysis. A sensitivity matrix is typically a crucial part of a deterministic image reconstruction process in a three-dimensional capacitance tomography (3D ECT) and strictly decides about a final image quality. Commonly used sensitivity matrix computation methods mostly provide acceptable results and additionally allow to perform a recalculation of sensitivity maps according to the changing permittivity distribution.

Design/methodology/approach

The new “tunnel-based” algorithm is proposed which traces the surfaces constructed along the electric field lines. The new solution is developed and tested using experimental data.

Findings

To fully validate the new technique both linear and non-linear image reconstruction processes were performed and the criteria of image error estimation were discussed. This paper discusses some preliminary results of the image reconstruction process using the new proposed algorithm. As a result of this research, an increased accuracy of the new method is proved.

Originality/value

The presented results of image reconstruction with new sensitivity matrix in comparison with the classic matrix proved that the new solution is able to improve the convergence and stability of image reconstruction process for 3D ECT imaging.

Details

Sensor Review, vol. 34 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 June 2012

Cihan Altuntas and Ferruh Yildiz

Laser scanning is increasingly used in many three‐dimensional (3‐D) measurement and modeling applications. It is the latest technique used in 3‐D measurement, and is becoming…

Abstract

Purpose

Laser scanning is increasingly used in many three‐dimensional (3‐D) measurement and modeling applications. It is the latest technique used in 3‐D measurement, and is becoming increasingly important within a number of applications. However, many applications require photogrammetric data in addition to laser scanning data. The purpose of this paper is to present a range and image sensor combination for three‐dimensional reconstruction of objects or scenes.

Design/methodology/approach

In this study, a Nikon D80 camera was mounted on an Ilris 3D laser scanner and CPP was estimated according to the laser scanner coordinate system. The estimated CPP was controlled using three different methods which were developed in this study and a sample application as coloring of point cloud using image taken by the camera mounted on the laser scanner was performed.

Findings

It was found that when a high‐resolution camera is mounted on laser scanners, camera position parameters (CPP) should be estimated very accurately with respect to the laser scanner coordinate system.

Originality/value

The paper shows that the combination of high‐resolution camera and laser scanners should be used for more accurate and efficient results in 3D modeling applications.

1 – 10 of over 7000