Search results

1 – 10 of 201
Open Access
Article
Publication date: 2 August 2019

Yazhou Mao, Yang Jianxi, Xu Wenjing and Liu Yonggang

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors…

Abstract

Purpose

The purpose of this paper is to investigate the effect of round pits arrangement patterns on tribological properties of journal bearing. In this paper, the tribological behaviors of journal bearing with different arrangement patterns under lubrication condition were studied based on M-2000 friction and wear tester.

Design/methodology/approach

The friction and wear of journal bearing contact surface were simulated by ANSYS. The wear mechanism of bearing contact surfaces was investigated by the means of energy dispersive spectrum analysis on the surface morphology and friction and wear status of the journal bearing specimens by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Besides, the wearing capacity of the textured bearing was predicted by using the GM (1,1) and Grey–Markov model.

Findings

As the loads increase, the friction coefficient of journal bearing specimens decrease first and then increase slowly. The higher rotation speed, the lower friction coefficient and the faster temperature build-up. The main friction method of the bearing sample is three-body friction. The existence of texture can effectively reduce friction and wear. In many arrangement patterns, the best is 4# bearing with round pits cross-arrangement pattern. Its texturing diameters are 60 µm and 125 µm, and the spacing and depth are 200 µm and 25 µm, respectively. In addition, the Grey–Markov model prediction result is more accurate and fit the experimental value better.

Originality/value

The friction and wear mechanism is helpful for scientific research and engineers to understand the tribological behaviors and engineering applications of textured bearing. The wear capacity of textured bearing is predicted by using the Grey–Markov model, which provides technical help and theoretical guidance for the service life and reliability of textured bearing.

Open Access
Article
Publication date: 16 August 2023

Florian Ausserer, Igor Velkavrh, Fevzi Kafexhiu and Carsten Gachot

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Abstract

Purpose

This study aims to focus on the development of an experimental setup for testing tribological pairings under a gas atmosphere at pressures up to 10 bar.

Design/methodology/approach

A pressure chamber allowing oscillating movement through an outer shaft was constructed and mounted on an oscillating tribometer. Due to a metal spring bellows system, a methodology for the evaluation of the coefficient of friction values separately from the spring forces was developed.

Findings

The selected material concept was qualitatively and quantitatively assessed. An evaluation of the static and the dynamic coefficient of friction was performed, which was crucial for the understanding of the adhesion effects of the tested material pairing. The amount of information that is lost due to averaging the measured friction values is higher than one would expect.

Originality/value

The developed experimental setup is unique and, compared with the existing tribometers for testing under gas ambient pressures, allows testing under contact conditions that are closer to real applications, such as compressors and expanders. An in-depth observation of the adhesion and stick–slip effects of the tested material pairings is possible as well.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0173/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 23 June 2023

Ferdinand Schmid, Constantin Paschold, Thomas Lohner and Karsten Stahl

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a…

Abstract

Purpose

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a profound knowledge of the local gear mesh is essential. The tooth contact of internal gears relates to a convex and concave surface that form a conformal contact. This is in contrast to external gears, where two convex surfaces form a contraformal contact. This paper aims at a better understanding of conformal contacts under elastohydrodynamic lubrication (EHL) to improve the design of internal gearings.

Design/methodology/approach

An existing numerical EHL model is used for studying the characteristic properties of a hard conformal EHL line contact. A hard contraformal EHL line contact is studied as reference. Non-Newtonian fluid behavior and thermal effects are considered. By taking into account the local contact conformity and kinematics, the effects and relevance of the curvature of the lubricant gap and micro-slip are analyzed. In a parameter study, scale effects of the contact radii on film thickness, temperature rise and friction are examined.

Findings

The curvature of the lubricant gap and effects of micro-slip are small in hard conformal EHL line contacts. For high micro-slip, it can be neglected. Hence, the modeling of conformal contacts using an equivalent geometry of the contact problem is reasonable. The parameter study shows beneficial tribological aspects of the conformal contact compared to the contraformal contact. Higher film thickness and lower fluid coefficient of friction are observed for conformal contacts, which can be attributed to lower pressures for the case of the same external normal force, or to a higher contact temperature rise for the case of equivalent contact pressure.

Originality/value

Despite its widespread existence, the local geometry and kinematics in hard conformal EHL line contacts like in internal gearings have been rarely studied. The findings help for a better understanding of local contact characteristics and its relevance. The quantified scale effects help to improve the efficiency and load-carrying capacity of machine elements with hard conformal EHL contacts, like internal gearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0366/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2515

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 21 June 2023

Pu Wang, Shuguo Wang, Jing Ge, Daolin Si and Dongsheng Yang

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead…

Abstract

Purpose

It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail, which will directly affect the wheel–rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation. The purpose of this paper is to provide suggestions for wear management of high-speed turnout.

Design/methodology/approach

The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site; the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.

Findings

The results show that: the major factor for the service life of a curved switch rail is the lateral wear. The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout. To be specific, the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout, but in the wider section at its rear end when for a facing turnout. The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm, which does not reach the specified limit of 6 mm. For comparison, the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm, which exceeds the specified limit. Based on this, in addition to meeting the requirements of maintenance rules, the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.6° will not contact the switch rail when the wheel is lifted by 2 mm. Accordingly, the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm (as specified) to 3.5 mm.

Originality/value

The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of

1464

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 May 2018

Thomas Wopelka, Ulrike Cihak-Bayr, Claudia Lenauer, Ferenc Ditrói, Sándor Takács, Johannes Sequard-Base and Martin Jech

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of

13132

Abstract

Purpose

This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime.

Design/methodology/approach

Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear.

Findings

A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring.

Originality/value

The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 10 November 2023

Chongyi Chang, Gang Guo, Wen He and Zhendong Liu

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and…

Abstract

Purpose

The objective of this study is to investigate the impact of longitudinal forces on extreme-long heavy-haul trains, providing new insights and methods for their design and operation, thereby enhancing safety, operational efficiency and track system design.

Design/methodology/approach

A longitudinal dynamics simulation model of the super long heavy haul train was established and verified by the braking test data of 30,000 t heavy-haul combination train on the long and steep down grade of Daqing Line. The simulation model was used to analyze the influence of factors on the longitudinal force of super long heavy haul train.

Findings

Under normal conditions, the formation length of extreme-long heavy-haul combined train has a small effect on the maximum longitudinal coupler force under full service braking and emergency braking on the straight line. The slope difference of the long and steep down grade has a great impact on the maximum longitudinal coupler force of the extreme-long heavy-haul trains. Under the condition that the longitudinal force does not exceed the safety limit of 2,250 kN under full service braking at the speed of 60 km/h the maximum allowable slope difference of long and steep down grade for 40,000 t super long heavy-haul combined trains is 13‰, and that of 100,000 t is only 5‰.

Originality/value

The results will provide important theoretical basis and practical guidance for further improving the transportation efficiency and safety of extreme-long heavy-haul trains.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 November 2021

Hakan Göcerler, Simon Medina, Michael Adler, Josef Brenner, Andreas Tadler, Michael Nagl and Christine Hohenadl

Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and…

Abstract

Purpose

Dry eye syndrome is one of the most common reasons for eye-related discomfort which, without treatment, in some cases may even lead to corneal damage. Blinking, baseline and reflex lachrymation and drainage compromise the topical application of therapeutics demanding repeated, often hourly applications of common lubricants. In contrast, topically administered chitosan-N-acetylcysteine-based eye drops were reported to sustain on the ocular surface for more than 24 h. The thiolated biopolymer can interact with the corneal mucin layer thereby forming covalent disulphide bridges, which may contribute to extended residence times.

Design/methodology/approach

In this study, the tribological characteristics of four different lubricants including hyaluronic acid and chitosan-N-acetylcysteine containing commercially available eye drops were investigated. For this purpose, a representative test setup was developed, which mimics the contact between the cornea and the eyelid wiper. Gels with different elastic properties coated with a mucin layer were used as a substrate to mimic the corneal surface. Tests were conducted with a micro-tribometer, and friction values were recorded. Contact zones were characterized by X-ray photoelectron spectroscopy to investigate wear and thiol bonding on the surface.

Findings

Results revealed the lowest average coefficient of friction values for chitosan-N-acetylcysteine-based eye drops and substrate dependence of the test setup.

Originality/value

In this study, the authors introduced an in vitro system to test different types of eye drops so that chemical interaction with the mucin layer can be observed. These interactions change the tribological performance significantly and must be considered to have results relevant to the actual application.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 13 May 2022

Gabriel Dämmer, Hartmut Bauer, Rüdiger Neumann and Zoltan Major

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots…

1256

Abstract

Purpose

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots and actuation systems.

Design/methodology/approach

RVAs typically have cast aluminum housings and injection-molded seals that consist of hard thermoplastic cores and soft elastomeric overmolds. Using a combination of additive manufacturing (AM), computer numerical control (CNC) machining and elastomer molding, a conventionally manufactured standard RVA was replicated. The standard housing design was modified, and polymeric replicas were obtained by selective laser sintering (SLS) or PolyJet (PJ) printing and subsequent CNC milling. Using laser-sintered molds, actuator seals were replicated by overmolding laser-sintered polyamide cores with silicone (SIL) and polyurethane (PU) elastomers. The replica RVAs were subjected to a series of leakage, friction and durability experiments.

Findings

The AM-based prototyping strategy described is suitable for producing functional and reliable RVAs for research and product development. In a representative durability experiment, the RVAs in this study endured between 40,000 and 1,000,000 load cycles. Frictional torques were around 0.5 Nm, which is 10% of the theoretical torque at 6 bar and comparable to that of the standard RVA. Models and parameters are provided for describing the velocity-dependent frictional torque. Leakage experiments at 10,000 load cycles and 6 bar differential pressure showed that PJ housings exhibit lower leakage values (6.8 L/min) than laser-sintered housings (15.2 L/min), and PU seals exhibit lower values (8.0 l/min) than SIL seals (14.0 L/min). Combining PU seals with PJ housings led to an initial leakage of 0.4 L/min, which increased to only 1.2 L/min after 10,000 load cycles. Overall, the PU material used was more difficult to process but also more abrasion- and tear-resistant than the SIL elastomer.

Research limitations/implications

More work is needed to understand individual cause–effect relationships between specific design features and system behavior.

Originality/value

To date, pneumatic RVAs have been manufactured by large-scale production technologies. The absence of suitable prototyping strategies has limited the available range to fixed sizes and has thus complicated the use of RVAs in research and product development. This paper proves that functional pneumatic RVAs can be produced by using more accessible manufacturing technologies and provides the tools for prototyping of application-specific RVAs.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 201