Search results

1 – 10 of 20
Article
Publication date: 16 September 2024

Royal Madan, Pallavi Khobragade and Shubhankar Bhowmick

This study aimed to analyze the free vibration of a radially graded Ni-Al2O3-based functionally graded (FG) disk with uniform thickness.

Abstract

Purpose

This study aimed to analyze the free vibration of a radially graded Ni-Al2O3-based functionally graded (FG) disk with uniform thickness.

Design/methodology/approach

Using the energy method, natural frequencies of rotating and non-rotating disks were determined at the limit elastic angular speed. Material properties were estimated using a modified rule of mixture. Both even and uneven porosity variation effects were considered in the material modeling. Finite element analysis validated the analytical approach.

Findings

The study explored limit angular speeds and natural frequencies across various grading indices, investigating the impact of porosity types and grading indices on these parameters.

Practical implications

Insights from this research are valuable for researchers and design engineers involved in modeling and fabricating porous FG disks, aiding in more effective design and manufacturing processes.

Originality/value

This study contributes to the field by providing a comprehensive analysis of free vibration behavior in radially graded Ni-Al2O3-based FG disks. The incorporation of material modeling considering both even and uneven porosity variation adds originality to the research. Additionally, the validation through finite element analysis enhances the credibility of the findings.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Article
Publication date: 16 September 2024

Émerson dos Santos Passari, Carlos Henrique Lauermann, André J. Souza, Fabio Pinto Silva and Rodrigo Rodrigues de Barros

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This…

Abstract

Purpose

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This study aims to focus on optimizing mechanical properties, precisely highlighting the crucial role of mechanical compressive strength in ensuring the functionality and durability of 3D-printed components, especially in industrial and engineering applications.

Design/methodology/approach

Using the Box−Behnken experimental design, the research investigated the influence of layer thickness, wall perimeter and infill level on mechanical resistance through compression. Parameters such as maximum force, printing time and mass utilization are considered for assessing and enhancing mechanical properties.

Findings

The layer thickness was identified as the most influential parameter over the compression time, followed by the degree of infill. The number of surface layers significantly influences both maximum strength and total mass. Optimization strategies suggest reducing infill percentage while maintaining moderate to high values for surface layers and layer thickness, enabling the production of lightweight components with adequate mechanical strength and reduced printing time. Experimental validation confirms the effectiveness of these strategies, with generated regression equations serving as a valuable predictive tool for similar parameters.

Practical implications

This research offers valuable insights for industries using 3D printing in creating prototypes and functional parts. By identifying optimal parameters such as layer thickness, surface layers and infill levels, the study helps manufacturers achieve stronger, lighter and more cost-efficient components. For industrial and engineering applications, adopting the outlined optimization strategies can result in components with enhanced mechanical strength and durability, while also reducing material costs and printing times. Practitioners can use the developed regression equations as predictive tools to fine-tune their production processes and achieve desired mechanical properties more effectively.

Originality/value

This research contributes to the ongoing evolution of additive manufacturing, providing insights into optimizing structural rigidity through polylactic acid (PLA) selection, Box−Behnken design and overall process optimization. These findings advance the understanding of fused deposition modeling (FDM) technology and offer practical implications for more efficient and economical 3D printing processes in industrial and engineering applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 19 June 2023

Ghania Mirouzi and Amina Houda

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach…

Abstract

Purpose

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach formulation of polymer concrete based on reduction in the quantity of the binder and disposal of large quantities of industrial by-products and household waste such as the marble, the brick and silica fume whose valuation in polymer concrete could be an interesting ecological and economical alternative. The incorporation of a rate of 10% brick powder affects the distribution of pores inside polymer concrete, that is, the pore diameters become thinner and decrease and the porosity becomes evenly distributed. The recycled mineral brick powder addition in polymer concrete mix improved the mechanical properties.

Design/methodology/approach

This polymer concrete was prepared by using polyester resin and two different types of sand, following a new formulation based on an empirical method. Furthermore, the optimal binder percentage was of 20% resin and a mixture of 52% dune sand and 48% quarry sand according to the Abrams method. To achieve our objective, five rates (from 2% to 10%) of brick powder, marble powder and silica fume were examined. Afterwards, its mechanical characteristics were evaluated via a three-point flexural with compressive resistance. The findings indicated that the addition of brick, marble and silica fume to polymer concrete increases the flexural strength with 21.84%, 12.76% and 9.07%, respectively.

Findings

Concerning the compressive strength, the best resistance is that of polymer concretes based on brick powder, and this economic formulation of polymer concrete serves the optimal cost/resistance ratio criteria. It allows an improvement in the mechanical resistance of concrete are obtained by adding brick powder that exceed that of the reference concrete.

Originality/value

In the past few decades, there has been several contribution concerning the subject of the reduction of the binder quantity in polymer concretes and adding the industrial and household wastes. However, previous studies revolving around the same area disregarded the effect of the brick powder, which appears scientifically of great importance for enriching the literature.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 August 2024

Sean McConnell, David Tanner and Kyriakos I. Kourousis

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology…

Abstract

Purpose

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology work to overcome this by introducing more lasers or dramatically different processing techniques. Current generation ML-PBF machines are typically not capable of taking on additional hardware to maximise productivity due to inherent design limitations. Thus, any increases to be found in this generation of machines need to be implemented through design or adjusting how the machine currently processes the material. The purpose of this paper is to identify the most beneficial existing methodologies for the optimisation of productivity in existing ML-PBF equipment so that current users have a framework upon which they can improve their processes.

Design/methodology/approach

The review method used here is the preferred reporting items for systematic review and meta-analysis (PRISMA). This is complemented by using an artificial intelligence-assisted literature review tool known as Elicit. Scopus, WEEE, Web of Science and Semantic Scholar databases were searched for articles using specific keywords and Boolean operators.

Findings

The PRIMSA and Elicit processes resulted in 51 papers that met the criteria. Of these, 24 indicated that by using a design of experiment approach, processing parameters could be created that would increase productivity. The other themes identified include scan strategy (11), surface alteration (11), changing of layer heights (17), artificial neural networks (3) and altering of the material (5). Due to the nature of the studies, quantifying the effect of these themes on productivity was not always possible. However, studies citing altering layer heights and processing parameters indicated the greatest quantifiable increase in productivity with values between 10% and 252% cited. The literature, though not always explicit, depicts several avenues for the improvement of productivity for current-generation ML-PBF machines.

Originality/value

This systematic literature review provides trends and themes that aim to influence and support future research directions for maximising the productivity of the ML-PBF machines.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 20