Search results

1 – 10 of over 1000
Article
Publication date: 20 May 2024

Kimia Abedi, Hamid Keshvari and Mehran Solati-Hashjin

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Abstract

Purpose

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Design/methodology/approach

The parameters of the bioprinting process significantly affect the printability of the bioink and the viability of cells. In turn, the bioink formulation and its physicochemical properties may influence the appropriate range of printing parameters. In extrusion-based bioprinting, the rheology of the bioink affects the printing pressure, cell survival and structural integrity. Three concentrations of alginate-gelatin hydrogel were prepared and printed at three different flow rates and nozzle gauges to investigate the print parameters. Other characterizations were performed to evaluate the hydrogel structure, printability, gelation time, swelling and degradation rates of the bioink and cell viability. An experimental design was used to determine optimal parameters. The analyses included live/dead assays, rheological measurements, swelling and degradation.

Findings

The experimental design results showed that the hydrogel flow rate substantially influenced printing accuracy and pressure. The best hydrogel flow rate in this study was 10 ml/h with a nozzle gauge of 18% and 4% alginate. Three different concentrations of alginate-gelatin hydrogels were found to exhibit shear-thinning behavior during printing. After seven days, 46% of the structure in the 4% alginate-5% gelatin sample remained intact. After printing, the viability of skin fibroblast cells for the optimized sample was 91%.

Originality/value

This methodology offers a straightforward bioink preparation method applicable to the majority of hydrogels used in extrusion-based procedures. This can also be considered a prerequisite for cell printing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 May 2024

Zhenshun Li, Jiaqi Li, Ben An and Rui Li

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Abstract

Purpose

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Design/methodology/approach

Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results.

Findings

The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters.

Originality/value

This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2024

Monojit Das, V.N.A. Naikan and Subhash Chandra Panja

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear…

Abstract

Purpose

The aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear width. The cutting tool is a crucial component in any machining process, and its failure affects the manufacturing process adversely. The prediction of cutting tool life by considering several factors that affect tool life is crucial to managing quality, cost, availability and waste in machining processes.

Design/methodology/approach

This study has undertaken the critical analysis and summarisation of various techniques used in the literature for predicting the life or remaining useful life (RUL) of the cutting tool through monitoring the tool wear, primarily flank wear. The experimental setups that comprise diversified machining processes, including turning, milling, drilling, boring and slotting, are covered in this review.

Findings

Cutting tool life is a stochastic variable. Tool failure depends on various factors, including the type and material of the cutting tool, work material, cutting conditions and machine tool. Thus, the life of the cutting tool for a particular experimental setup must be modelled by considering the cutting parameters.

Originality/value

This submission discusses tool life prediction comprehensively, from monitoring tool wear, primarily flank wear, to modelling tool life, and this type of comprehensive review on cutting tool life prediction has not been reported in the literature till now. The future suggestions provided in this review are expected to provide avenues to solve the unexplored challenges in this field.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 May 2024

Fred Awaah, Munkaila Abdulai and Esther Julia Korkor Attiogbe

The study investigates the comparative efficacy of the culturo-techno-contextual approach (CTCA) and the lecture method in students’ understanding of the human resource management…

Abstract

Purpose

The study investigates the comparative efficacy of the culturo-techno-contextual approach (CTCA) and the lecture method in students’ understanding of the human resource management (HRM) curriculum in Ghana.

Design/methodology/approach

A quasi-experimental design is employed to gather data from 245 4th-year undergraduate students studying HRM at a Ghanaian public university. The experimental group with a population of 115 students was taught with CTCA, whilst the control group with a population of 130 students was taught using the lecture method. The data was collected using the HRM achievement test (HRMAT). The data were analysed using the descriptive analysis of covariance technique with pre-test scores added as a covariate.

Findings

The findings reveal that the experimental group significantly outperformed the control group in the study of HRM, affirming the effectiveness of the CTCA over the lecture method.

Originality/value

This study is novel because it is the first paper to apply the CTCA to the study of HRM in the Ghanaian higher education space. It will, therefore, benefit HRM education in the country when educational stakeholders adopt a sequential and methodical approach to teaching and learning HRM using the CTCA.

Details

Journal of Applied Research in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-7003

Keywords

Article
Publication date: 28 July 2023

Ewa Wanda Maruszewska, Małgorzata Niesiobędzka and Sabina Kołodziej

The study aims to investigate the impact of indirectly evoked incentives, in the form of supervisor’s preferences, on the decision about accounting policy regarding depreciation…

Abstract

Purpose

The study aims to investigate the impact of indirectly evoked incentives, in the form of supervisor’s preferences, on the decision about accounting policy regarding depreciation method selection and to examine subsequent post-decision distortion by evaluating the depreciation method.

Design/methodology/approach

The authors conducted two experiments with control and treatment groups, manipulating the supervisor’s indirectly evoked preferences. In Study 2, the authors also measured the evaluation of both depreciation methods to investigate post-decisional distortion regarding the assessment of the depreciation method chosen in a decision task. Study 1 was conducted among 85 accounting students, while Study 2 consisted of 200 accountants.

Findings

Both studies revealed the significant impact of supervisor’s indirectly evoked preferences on accounting policy decisions. Participants who were aware of supervisors’ preferences were more likely to choose the depreciation method that was consistent with those preferences. The authors also found that those participants attached a higher value to the depreciation method, providing evidence that adherence to the supervisor’s preferences results in a distorted assessment of the depreciation methods.

Originality/value

First, this study shows that indirectly evoked supervisors’ preferences may lead to a departure from substantive criteria resulting in low-quality accounting outcomes. Second, the assessment of the depreciation method is inseparable from the situational context, as the evaluation of the depreciation method is interdependent upon the preferences of the choice of a depreciation method and the fulfillment of those preferences.

Details

Meditari Accountancy Research, vol. 32 no. 3
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 27 February 2024

Feng Qian, Yongsheng Tu, Chenyu Hou and Bin Cao

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods…

Abstract

Purpose

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods based on deep learning have been proposed, the methods proposed by these works cannot be directly applied to the actual wireless communication scenario, because there are usually two kinds of dilemmas when recognizing the real modulated signal, namely, long sequence and noise. This paper aims to effectively process in-phase quadrature (IQ) sequences of very long signals interfered by noise.

Design/methodology/approach

This paper proposes a general model for a modulation classifier based on a two-layer nested structure of long short-term memory (LSTM) networks, called a two-layer nested structure (TLN)-LSTM, which exploits the time sensitivity of LSTM and the ability of the nested network structure to extract more features, and can achieve effective processing of ultra-long signal IQ sequences collected from real wireless communication scenarios that are interfered by noise.

Findings

Experimental results show that our proposed model has higher recognition accuracy for five types of modulation signals, including amplitude modulation, frequency modulation, gaussian minimum shift keying, quadrature phase shift keying and differential quadrature phase shift keying, collected from real wireless communication scenarios. The overall classification accuracy of the proposed model for these signals can reach 73.11%, compared with 40.84% for the baseline model. Moreover, this model can also achieve high classification performance for analog signals with the same modulation method in the public data set HKDD_AMC36.

Originality/value

At present, although many AMR methods based on deep learning have been proposed, these works are based on the model’s classification results of various modulated signals in the AMR public data set to evaluate the signal recognition performance of the proposed method rather than collecting real modulated signals for identification in actual wireless communication scenarios. The methods proposed in these works cannot be directly applied to actual wireless communication scenarios. Therefore, this paper proposes a new AMR method, dedicated to the effective processing of the collected ultra-long signal IQ sequences that are interfered by noise.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 31 May 2024

Amanda de Oliveira e Silva, Alice Leonel, Maisa Tonon Bitti Perazzini and Hugo Perazzini

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the…

Abstract

Purpose

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the effective thermal conductivity (keff) of BSG and to develop an Artificial Neural Network (ANN) to predict keff, since this property is fundamental in the design and optimization of the thermochemical conversion processes toward the feasibility of bioenergy production.

Design/methodology/approach

The experimental determination of keff as a function of BSG particle diameter and heating rate was performed using the line heat source method. The resulting values were used as a database for training the ANN and testing five multiple linear regression models to predict keff under different conditions.

Findings

Experimental values of keff were in the range of 0.090–0.127 W m−1 K−1, typical for biomasses. The results showed that the reduction of the BSG particle diameter increases keff, and that the increase in the heating rate does not statistically affect this property. The developed neural model presented superior performance to the multiple linear regression models, accurately predicting the experimental values and new patterns not addressed in the training procedure.

Originality/value

The empirical correlations and the developed ANN can be utilized in future work. This research conducted a discussion on the practical implications of the results for biomass valorization. This subject is very scarce in the literature, and no studies related to keff of BSG were found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 August 2022

Zhongbao Liu and Wenjuan Zhao

The research on structure function recognition mainly concentrates on identifying a specific part of academic literature and its applicability in the multidiscipline perspective…

Abstract

Purpose

The research on structure function recognition mainly concentrates on identifying a specific part of academic literature and its applicability in the multidiscipline perspective. A specific part of academic literature, such as sentences, paragraphs and chapter contents are also called a level of academic literature in this paper. There are a few comparative research works on the relationship between models, disciplines and levels in the process of structure function recognition. In view of this, comparative research on structure function recognition based on deep learning has been conducted in this paper.

Design/methodology/approach

An experimental corpus, including the academic literature of traditional Chinese medicine, library and information science, computer science, environmental science and phytology, was constructed. Meanwhile, deep learning models such as convolutional neural networks (CNN), long and short-term memory (LSTM) and bidirectional encoder representation from transformers (BERT) were used. The comparative experiments of structure function recognition were conducted with the help of the deep learning models from the multilevel perspective.

Findings

The experimental results showed that (1) the BERT model performed best, with F1 values of 78.02, 89.41 and 94.88%, respectively at the level of sentence, paragraph and chapter content. (2) The deep learning models performed better on the academic literature of traditional Chinese medicine than on other disciplines in most cases, e.g. F1 values of CNN, LSTM and BERT, respectively arrived at 71.14, 69.96 and 78.02% at the level of sentence. (3) The deep learning models performed better at the level of chapter content than other levels, the maximum F1 values of CNN, LSTM and BERT at 91.92, 74.90 and 94.88%, respectively. Furthermore, the confusion matrix of recognition results on the academic literature was introduced to find out the reason for misrecognition.

Originality/value

This paper may inspire other research on structure function recognition, and provide a valuable reference for the analysis of influencing factors.

Details

Library Hi Tech, vol. 42 no. 3
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 27 May 2024

Hasan Baş, Fatih Yapıcı and Erhan Ergün

The use of additive manufacturing in many branches of industry is increasing significantly because of its many advantages, such as being able to produce complex parts that cannot…

Abstract

Purpose

The use of additive manufacturing in many branches of industry is increasing significantly because of its many advantages, such as being able to produce complex parts that cannot be produced by classical methods, using fewer materials, easing the supply chain with on-site production, being able to produce with all kinds of materials and producing lighter parts. The binder jetting technique, one of the additive manufacturing methods researched within the scope of this work, is predicted to be the additive manufacturing method that will grow the most in the next decade, according to many economic reports. Although additive manufacturing methods have many advantages, they can be slower than classical manufacturing methods regarding production speed. For this reason, this study aims to increase the manufacturing speed in the binder jetting method.

Design/methodology/approach

Adaptive slicing and variable binder amount algorithm (VBAA) were used to increase manufacturing speed in binder jetting. Taguchi method was used to optimize the layer thickness and saturation ratio in VBAA. According to the Taguchi experimental design, 27 samples were produced in nine different conditions, three replicates each. The width of the samples in their raw form was measured. Afterward, the samples were sintered at 1,500 °C for 2 h. After sintering, surface roughness and density tests were performed. Therefore, the methods used have been proven to be successful. In addition, measurement possibilities with image processing were investigated to make surface roughness measurements more accessible and more economical.

Findings

As a result of the tests, the optimum printing condition was decided to be 180–250 µm for layer thickness and 50% for saturation. A separate test sample was then designed to implement adaptive slicing. This test sample was produced in three pieces: adaptive (180–250 µm), thin layer (180 µm) and thick layer (250 µm) with the determined parameters. The roughness values of the adaptive sliced sample and the thin layer sample were similar and better than the thick layer sample. A similar result was obtained using 12.31% fewer layers in the adaptive sample than in the thin layer sample.

Originality/value

The use of adaptive slicing in binder jetting has become more efficient. In this way, it will increase the use of adaptive slicing in binder jetting. In addition, a cheap and straightforward image processing method has been developed to calculate the surface roughness of the parts.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 May 2024

Huan Huang and Xi Yu Leung

This paper aims to uncover the insights derived from past experimental studies in promoting sustainable tourism. It also advocates for leveraging future experimental designs to…

Abstract

Purpose

This paper aims to uncover the insights derived from past experimental studies in promoting sustainable tourism. It also advocates for leveraging future experimental designs to position tourism as a catalyst for positive change toward sustainable development goals.

Design/methodology/approach

A review of previous literature examines the contributions of experimental design in both tourist studies and employee studies within the tourism fields.

Findings

Previous experimental studies have explored effective methods shaping tourists’ sustainable behaviors and management strategies contributing to employees’ decent work. The importance of integrating digital technology in these interventions is highlighted. A future research agenda encompassing three dimensions – technological progress, theory development and practical implications and research design – is proposed to leverage experimental studies for fostering sustainable development within the tourism industry.

Originality/value

This study, through a comprehensive review, highlights the significant impacts of previous experimental studies on encouraging responsible consumption among tourists and championing improved working conditions for employees. It underscores the necessity for enhanced experimental design, which should integrate theoretical frameworks and prioritize technological innovations to address real-world challenges. These improvements are crucial for advancing the tourism industry toward greater sustainability.

1 – 10 of over 1000