Search results

1 – 10 of 24
Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 3 May 2024

Salim Caliskan and Hakan Akyuz

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Abstract

Purpose

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Design/methodology/approach

In order to compare the coverage ratio and speckle diameter during the evaluation of the correlation of digital images (DIC) study, template speckle plates were produced on a computer numerical control (CNC) punch press with 600 punches per minute. After the speckle plates were manufactured, the speckled pattern was randomly painted on a plain white side through the manufactured template plates, and then tensile tests were performed under the same loading conditions for each sample to observe displacement variation via correlation parameters.

Findings

During the manufacturing of templates with thin plates, a punch diameter of less than 1.7 mm will cause tool failure; therefore, uniform speckle size can be assessed before operation. A higher coverage ratio resulted in more accurate and reliable results in displacement data. With smaller coverage, the facet size should be increased to achieve favorable results.

Research limitations/implications

If thick template plates are selected, speckle painting cannot be done properly; therefore, template thickness shall also be assessed before operation.

Practical implications

For randomly distributed DIC templates, increasing coverage beyond 50% does not make sense due to difficulties in the production process in the punch press.

Originality/value

Evaluating DIC results via templates manufactured in a punch press with different speckle diameters and coverage ratios is a new topic in literature.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

1037

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 17 May 2022

Douglas Aghimien, Clinton Aigbavboa, Ayodeji Emmanuel Oke and John Aliu

Digitalisation, which involves the use of digital technologies in transforming an organisation’s activities, transcends just the acquiring of emerging digital tools. Having the…

1613

Abstract

Purpose

Digitalisation, which involves the use of digital technologies in transforming an organisation’s activities, transcends just the acquiring of emerging digital tools. Having the right people to drive the implementation of these technologies and attaining strategic organisational goals is essential. While most studies have focused on the use of emerging technologies in the construction industry, less attention has been given to the ‘people’ dimension. Therefore, this study aims to assess the people-related features needed for construction digitalisation.

Design/methodology/approach

The study adopted pragmatic thinking using a mixed-method approach. A Delphi was used to achieve the qualitative aspect of the research, while a questionnaire survey conducted among 222 construction professionals was used to achieve the quantitative aspect. The data gathered were analysed using frequency, percentage, mean item score, Kruskal–Wallis H test, exploratory factor analysis and confirmatory factor analysis.

Findings

Based on acceptable reliability, validity and model fit indices, the study found that the people-related factors needed for construction digitalisation can be grouped into technical capability of personnel, attracting and retaining digital talent and organisation’s digital culture.

Practical implications

The findings offer valuable benefits to construction organisations as understanding these identified people features can help lead to better deployment of digital tools and the attainment of the digital transformation.

Originality/value

This study attempts to fill the gap in the shortage of literature exploring the people dimension of construction digitalisation. The study offers an excellent theoretical backdrop for future works on digital talent for construction digitalisation, which has gained less attention in the current construction digitalisation discourse.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 30 April 2024

Isiaka Oluwole Oladele, Omoye Oseyomon Odemilin, Samson Oluwagbenga Adelani, Anuoluwapo Samuel Samuel Taiwo and Olajesu Favor Olanrewaju

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid…

Abstract

Purpose

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid biocomposites. This is part of responsible production and sustainability techniques for sustainable development goals. This study aims to broaden animal and plant fiber utilization in the sustainable production of epoxy resins for engineering applications.

Design/methodology/approach

This research used two reinforcing materials [chicken feather fiber (CFF) and bamboo particles (BP)] to reinforce epoxy resin. The BPs were kept constant at 6 Wt.%, while the CFF was varied within 3–15 Wt.% in the composites to make CFF-BP polymer-reinforced composite (CFF-BP PRC). The mechanical experiment showed a 21% reduction in densities, making the CFF-BP PRC an excellent choice for lightweight applications.

Findings

It was discovered that fabricated composites with 10 mm CFF length had improved properties compared with the 15 mm CFF length and pristine samples, which confirmed that short fibers are better at enhancing randomly dispersed fibers in the epoxy matrix. However, the ballistic properties of both samples matched. There is a 40% increase in tensile strength and a 54% increase in flexural strength of the CFF-BP PRC compared to the pristine sample.

Originality/value

According to the literature review, to the best of the authors’ knowledge, this is a novel study of chicken fiber and bamboo particles in reinforcing epoxy composite.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Open Access
Article
Publication date: 10 April 2023

Samira Mili and Carlos Ferro-Soto

This paper aims to identify the antecedents and postcedents of customer satisfaction, including utilitarian, social and emotional factors, in a fair trade (FT) coffee consumption…

2191

Abstract

Purpose

This paper aims to identify the antecedents and postcedents of customer satisfaction, including utilitarian, social and emotional factors, in a fair trade (FT) coffee consumption context.

Design/methodology/approach

This paper is based on a broad range of 177 consumers of FT coffee in Spain, the data analysis used structural equation modeling (SEM) with SPSS/AMOS 26.0 software.

Findings

This paper supports that both customer social value and quality affect perceived value (PV). PV in turn has effects on customer satisfaction and the latter influences loyalty. Conversely, both customer emotional value and customer expectations were not confirmed as antecedents of PV.

Research limitations/implications

The consumer satisfaction analysis conducted differs substantially from those of conventionally traded coffee, as social and emotional factors were considered along with utilitarian factors.

Practical implications

Practitioners, retailers and relevant institutions should design strategies to manage efficiently channel efforts to improve the consumer satisfaction and its loyalty.

Originality/value

This paper contributes to a substantial improvement in the understanding of consumer satisfaction and its consequences, in FT coffee consumption contexts. A new integrated theoretical model on customer satisfaction has been provided, which includes social and emotional perception factors, along with cognitive perception (quality and expectations) factors.

研究目的

研究旨在確認在公平貿易咖啡消費的課題上,顧客滿意的誘因及其後因,這包括實用的因素,社會的因素和情感的因素。

研究設計/方法/理念

研究之數據廣泛來自在西班牙177名公平貿易咖啡消費者; 分析則以結構方程模型,並以SPSS Amos 26軟件來進行。

研究結果

研究結果證實,顧客社會價值和質量是會影響認知價值的;認知價值繼而影響顧客滿意度,而顧客滿意度又進而影響他們的忠誠。相反的,顧客情緒價值或他們的期望、均未能證實是認知價值的先決條件。

研究的局限/啟示

本研究所進行的消費者滿意度分析,與其它以傳統方法銷售的咖啡之相關研究有很大的分別,這是因為本研究除了考慮實用的因素外,還納入了社會因素和情感因素。

實務方面的啟示

從業人員、零售商和有關的機構應制訂適切的策略,以能有效地管理各個管道,來提升消費者的滿意度和忠誠。

研究的原創性

本研究的貢獻在於它幫助我們在公平貿易咖啡消費的課題上,對消費者滿意及其效果有更深入的認識。研究亦提供了一個探討顧客滿意度的嶄新、綜合的理論模型,而這個理論模型,除了涵蓋知覺認知 (質量和期望) 的因素外,還納入了社會的和情感的知覺因素。

Access

Only Open Access

Year

Last month (24)

Content type

1 – 10 of 24