Search results

1 – 10 of 47
Article
Publication date: 9 January 2024

Kathiravan Balusamy, Vinothraj A. and Suresh V.

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body…

Abstract

Purpose

The purpose of this study is to explore the effects of aerospike and hemispherical aerodisks on flow characteristics and drag reduction in supersonic flow over a blunt body. Specifically, the study aims to analyze the impact of varying the length of the cylindrical rod in the aerospike (ranging from 0.5 to 2.0 times the diameter of the blunt body) and the diameter of the hemispherical disk (ranging from 0.25 to 0.75 times the blunt body diameter). CFD simulations were conducted at a supersonic Mach number of 2 and a Reynolds number of 2.79 × 106.

Design/methodology/approach

ICEM CFD and ANSYS CFX solver were used to generate the three-dimensional flow along with its structures. The flow structure and drag coefficient were computed using Reynolds-averaged Navier–Stokes equation model. The drag reduction mechanism was also explained using the idea of dividing streamline and density contour. The performance of the aero spike length and the effect of aero disk size on the drag are investigated.

Findings

The separating shock is located in front of the blunt body, forming an effective conical shape that reduces the pressure drag acting on the blunt body. It was observed that extending the length of the spike beyond a specific critical point did not impact the flow field characteristics and had no further influence on the enhanced performance. The optimal combination of disk and spike length was determined, resulting in a substantial reduction in drag through the introduction of the aerospike and disk.

Research limitations/implications

To predict the accurate results of drag and to reduce the simulation time, a hexa grid with finer mesh structure was adopted in the simulation.

Practical implications

The blunt nose structures are primarily employed in the design of rockets, missiles, and re-entry capsules to withstand higher aerodynamic loads and aerodynamic heating.

Originality/value

For the optimized size of the aero spike, aero disk is also optimized to use the benefits of both.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Kai Cao, Guodong Qin, Jian Zhou, Jiajun Xu, Linsen Xu and Aihong Ji

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with…

Abstract

Purpose

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with wall-climbing robots. Therefore, this paper proposes a design method for a rolling-adsorption wall-climbing robot (RWCR) based on vacuum negative pressure adsorption of the crawler. It can improve the operation efficiency while solving the safety problems.

Design/methodology/approach

The pulleys and tracks are used to form a dynamic sealing chamber to improve the dynamic adsorption effect and motion flexibility of the RWCR. The mapping relationship between the critical minimum adsorption force required for RWCR downward slip, longitudinal tipping and lateral overturning conditions for tipping and the wall inclination angle is calculated using the ultimate force method. The pressure and gas flow rate distribution of the negative pressure chamber under different slit heights of the negative pressure mechanism is analysed by the fluid dynamics software to derive the minimum negative pressure value that the fan needs to provide.

Findings

Simulation and test results show that the load capacity of the RWCR can reach up to 6.2 kg on the smooth glass wall, and the maximum load in the case of lateral movement is 4.2 kg, which verifies the rationality and effectiveness of the design.

Originality/value

This paper presents a new design method of a RWCR for different rough wall surfaces and analyses the ultimate force state and hydrodynamic characteristics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

30

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Hamza Berrehal, Roshanak Karami, Saeed Dinarvand, Ioan Pop and Ali Chamkha

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone…

Abstract

Purpose

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone, with linear surface temperature (LST) and linear surface heat flux (LSHF), in the presence of a cross-magnetic field. In industrial applications, such as oil and gas plants, food industries, steel factories and nuclear packages, the real bodies may contain nonorthogonal walls and variable cross-section three-dimensional forms which this issue can clarify the importance of selective geometry in the present research.

Design/methodology/approach

The mass-based scheme is accomplished for the simulation, and the entropy generation and Bejan number will be analyzed in conjunction with the aforementioned model. It has been hypothesized that two types of boundary conditions (LST and LSHF) as well as five nanoparticle shapes (sphere, brick, cylinder, platelet and disk) present a collection of crucial results. The overseeing PDEs are changed over completely to the dimensionless ODEs, and these are solved by Runge–Kutta–Fehlberg approach combined with a shooting methodology for certain values of physical parameters.

Findings

Subsequent to the fantastic compromise of the computational outcomes with past reports, the outcomes are introduced to conduct the investigation of the hydrodynamics/thermal boundary layers, the skin friction and the Nusselt number, as well as entropy generation and Bejan number. A state of hybrid nanofluid, which exhibits a remarkable increase in heat transfer in comparison to the states of mono-nanofluid and regular fluid, has been found to have the highest Nusselt number; however, the skin friction values should always be taken into account and managed. The entropy generation improves with the mass of the second nanoparticle (silver), while the opposite pattern is exhibited for the Bejan number. Furthermore, the lowest value of entropy generation number belongs to the cylindrical shape of nanoparticles in the LST case. In final, a significant accomplishment of the current study is the accurate output of the mass-based scheme for an entropy analysis problem.

Originality/value

To the best of the authors’ knowledge, for the first time, in this study, a new development of natural convective flow of a hybrid nanofluid about the warmed (LST and LSHF) and down-pointing rotating vertical cone by the mass-based algorithm has been presented. The applied methodology considers the masses of base fluid (water) and nanoparticles (Ag and CuO) as an alternative to the first and second nanoparticles volume fraction. Indeed, the combination use of the Tiwari–Das nanofluid model and the mass-based hybridity algorithm for the entropy generation analysis can be the main novelty of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2023

Gokhan Agac, Birdogan Baki and Ilker Murat Ar

The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in…

Abstract

Purpose

The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in this area. Moreover, it also aims to pinpoint new research opportunities based on the recent innovative technologies for the BSC network design.

Design/methodology/approach

The study gives a comprehensive systematic review of the BSC network design studies until October 2021. This review was carried out in accordance with preferred reporting items for systematic reviews and meta-analyses (PRISMA). In the literature review, a total of 87 studies were analyzed under six main categories as model structure, application model, solution approach, problem type, the parties of the supply chain and innovative technologies.

Findings

The results of the study present the researchers’ tendencies and preferences when designing their BSC network models.

Research limitations/implications

The study presents a guide for researchers and practitioners on BSC from the point of view of network design and encourages adopting innovative technologies in their BSC network designs.

Originality/value

The study provides a comprehensive systematic review of related studies from the BSC network design perspective and explores research gaps in the collection and distribution processes. Furthermore, it addresses innovative research opportunities by using innovative technologies in the area of BSC network design.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 47