Search results

1 – 10 of 109
Article
Publication date: 17 September 2024

Sirisha Deepthi Sornapudi, Meenu Srivastava, Srinivas Manchikatla, Samuel Thavaraj H. and Senthil Kumar B.

Natural extracts produced with Annona squamosa and Moringa oleifera leaves through the methanol-based solvent were coated on 100% cotton and 80%:20% polyester/cotton blends to…

Abstract

Purpose

Natural extracts produced with Annona squamosa and Moringa oleifera leaves through the methanol-based solvent were coated on 100% cotton and 80%:20% polyester/cotton blends to improve the functional properties such as antimicrobial activity, wicking, stiffness and crease recovery of the fabric using an eco-friendly 1,2,3,4-butane tetracarboxylic acid (BTCA) crosslinking agent.

Design/methodology/approach

In this study, 100% cotton and 80:20% Polyester/Cotton fabrics with surface densities of 113.5 g/m2 and 101 g/m2 were treated BTCA. Eight different samples were produced by padding through the natural extracts. The FTIR investigation was performed on all the fabric samples. These coated fabrics were studied for their antimicrobial activity, wicking, stiffness and crease recovery properties.

Findings

It was found that the BTCA cross-linked fabrics showed higher antimicrobial activity against gram-positive and gram-negative bacteria. Similarly, the percentage crease recovery angle was higher for the Annona squamosa coated sample than for Moringa Oleifera leaf extract in both cotton and polyester cotton blend samples. Furthermore, no significant variation in stiffness values was discovered between the control samples of cotton and polyester cotton blend and its treatment one. It was interesting to note that treating the fabrics with cross-linker showed improved vertical wicking properties, which were closer to control fabric values. The study confirms that crosslinking the fabrics with BTCA has improved the functional properties of the fabrics. The zone of inhibition values of BTCA cross-linked moringa methanolic leaves extract coated cotton and polyester cotton blend were 6 to 6.5 cm, which was more than 50% higher than non-BTCA cross-linked fabric, and BTCA cross-linker has improved the vertical wicking properties.

Research limitations/implications

The outcome of this study will help to gain a better understanding of BTCA cross-linkers for improving the functional coating on textile substrates.

Originality/value

This study was conducted to improve the natural extract coating on textile material with eco-friendly aspects, enhancing the commercial utility of these finished fabrics

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 July 2024

Manal El-Zawahry and Hager Gamal

This paper aims to focus on the aqueous extraction of natural dye from haematoxylum campechianum L. bark for finishing the bio-mordant cotton fabrics producing value-added…

Abstract

Purpose

This paper aims to focus on the aqueous extraction of natural dye from haematoxylum campechianum L. bark for finishing the bio-mordant cotton fabrics producing value-added, environment-friendly textile products, for biomedical applications.

Design/methodology/approach

The study focuses on the creation of eco-friendly bio-mordant cotton fabric using gallic acid and gelatin, Al3+ and Fe2+ salts and metal mordant. The optimal pH for extraction, structural characterization and phytochemical analysis of the extracted dye were estimated using UV-visible spectrophotometer, FTIR and qualitative analysis. Variations in electrolyte concentration and pH medium were also considered. The study also examines build-up properties, colorimetric values and fastness characteristics of the colored fabrics.

Findings

All the dyed fabrics exhibit very good to excellent in terms of antimicrobial resistance against S. aureus and C. allbicans.

Practical implications

Pre-mordant cotton fabrics with Fe2+ and a combination of metal and bio-mordant show higher antibacterial resistance against P. aerugionsa. Further, bio-mordant and a combination of both mordant exhibit excellent UV protection and antioxidant activity performance compared to that of undyed fabrics.

Originality/value

This work opens up a huge potential for producing healthy bioactive-colored fabrics used in medical textiles and other usages.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 September 2022

A. Gayathri, P. Varalakshmi and M. G. Sethuraman

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant…

Abstract

Purpose

This study aims to develop multifunctional, namely, superhydrophobic, flame-retardant and antibacterial, coatings over cotton fabric, using casein as green-based flame-retardant and silver nanoparticles as antibacterial agent by solution immersion method.

Design/methodology/approach

The cotton fabric is first coated with casein to make it flame-retardant. AgNPs synthesized using Cinnamomum zeylanicum bark extract is coated over the casein layer. Finally, stearic acid is used to coat the cotton to make it superhydrophobic. X-ray diffraction, transmission electron microscopy analysis and ultraviolet-visible spectroscopy are used to investigate the produced AgNPs. The as-prepared multifunctional cotton is characterized by scanning electron microscopy, energy dispersive X-ray analysis and attenuated total reflection-infrared studies. Flame test, limiting oxygen index test and thermogravimetric analyzer studies have also been performed to study the flame-retardant ability and thermal stability of treated fabric, respectively. The antibacterial effect of the coatings is evaluated by disc-diffusion technique. Water contact angle is determined to confirm the superhydrophobic nature of cotton fabric.

Findings

The outcomes of this study showed that the prepared multifunctional cotton fabric had maximum contact angle of greater than 150° with good flame retardancy, high thermal stability, greater washing durability and high antibacterial activity against the growth of Pseudomonas aeruginosa and Acinetobacter indicus. Additionally, the as-prepared superhydrophobic cotton showed an excellent oil–water separation efficiency.

Research limitations/implications

The trilayered multifunctional cotton fabric has limiting washing durability up to 20 washing cycles. Treated functional fabric can be used as an antibacterial, therapeutic, water repellent and experimental protective clothing for medical, health care, home curtains and industrial and laboratory purposes.

Originality/value

The study brings out the robustness of this method in the development of multifunctional cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. 28 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 December 2022

Khaled Mostafa, Heba Ameen and Ahmed Medhat

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent…

Abstract

Purpose

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent process. This was done for rendering cotton dye-able with Acid Blue 284, which in fact does not have any direct affinity to fix on it.

Design/methodology/approach

Dyeing characteristics of the samples such as color strength (K/S), fastness properties to light, rubbing and perspiration and durability, as well as tensile strength, elongation at break, whiteness, weight loss and wettability in addition to zeta potential of the dyed samples, were determined and compared with untreated fabric. Confirmation and characterization of the plasma-treated samples via chemical modifications and zeta potential was also studied using Fourier transform infrared spectroscopy (FTIR) and Malvern Zetasizer instrumental analysis.

Findings

The obtained results of the plasma-treated fabric reflect the following findings: FTIR results indicate the formation of nitrogen-containing groups on cotton fabrics; notable enhancement in the fabric wettability, zeta potential to more positive values and improvement in the dyeability and overall fastness properties of treated cotton fabrics in comparison with untreated fabric; the tensile strength, elongation at break, whiteness and weight % of the plasma treated fabrics are lower than that untreated one; and the durability of the plasma treated fabric decreased with increasing the number of washing cycles.

Originality/value

The novelty addressed here is rendering cotton fabrics dye-able with acid dye via the creation of new cationic nitrogen-containing groups on their surface via nitrogen plasma treatment as an eco-friendly and efficient tool with a physical/zero-effluent process.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 August 2024

Aixin Zhang, Wenli Deng, Qiuyang Li, Zilong Song and Guizhen Ke

This paper aims to demonstrate that, in line with the emerging trend of multifunctional yarn development, cotton yarn can effectively harness renewable solar energy to achieve…

Abstract

Purpose

This paper aims to demonstrate that, in line with the emerging trend of multifunctional yarn development, cotton yarn can effectively harness renewable solar energy to achieve photothermal conversion and thermochromism. This innovation not only maintains the comfort associated with natural fiber cotton yarn but also enhances its ultraviolet (UV) light resistance.

Design/methodology/approach

In this work, 4% zirconium carbide (ZrC) and thermochromic powder were adhered to cotton yarn through polyurethane (PU) by sizing coating method. After sizing, the two cotton yarns are twisted by ring spinning to obtain composite yarns with photothermal conversion and thermochromic functions.

Findings

The yarn obtained by cotton/6%PU/8% thermochromic dye single yarn and cotton/6%PU/4% ZrC single yarn composite is the best match. After 5 min of infrared light, the temperature of the composite yarn rose to the maximum, increasing by 36.1°C. The ΔE* value before and after irradiation of infrared lamp is 26.565, which proves that the thermochromic function is good. The yarn dryness unevenness was significantly reduced by 27.2%. The composite yarn has a UPF value of up to 89.22, and its performance characteristics remain stable after 100 minutes of washing.

Originality/value

The composite yarn’s photothermal conversion and thermochromism functions are mutually reinforcing. Using sunlight can simultaneously achieve heating and discoloration effects without consuming additional energy. The cotton yarn used in this application is versatile, and suitable for a wide range of uses including clothing, temperature visualization detection and other scenarios.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 August 2024

John D. Kechagias, Dimitrios Chaidas and Tatjana Spahiu

New sustainable approaches to fashion products are needed due to the demand for customization, better quality and cost reduction. Therefore, the decoration of fashion products…

Abstract

Purpose

New sustainable approaches to fashion products are needed due to the demand for customization, better quality and cost reduction. Therefore, the decoration of fashion products using 3D printing technology can create a new direction for manufacturing science.

Design/methodology/approach

This study aims to optimize the 3D printing of soft TPU material on textiles. In the past decade, trials of using 3D printing in tailored fashion products have been done due to the 3D printing simplicity, low cost of materials and time reduction. Therefore, soft polymers can be multi-layer stepped-deposited smoothly with the fused filament fabrication process.

Findings

Even though there have been many attempts in the literature to 3D print multilayer polymer filaments directly onto textile fabrics by special-purpose 3D printers, only a few reports of decorative or personalized artefact 3D printing using open-platform filament material extrusion 3D printers. Printing speed, nozzle Z distance, textile fabric thickness and deposited strand height significantly affect 3D printing on textile fabric.

Originality/value

This study investigates the potential of 3D printing on textiles by changing the printing speed, nozzle hot end, Z distance and layer thickness. It presents two critical case studies of 3D printing soft thermoplastic polyurethane material on a cotton T-shirt and on a tulle textile to reveal the 3D printing on textile fabrics manufacturing challenges.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 July 2024

Hyo Jung (Julie) Chang, Mohammad Abu Nasir Rakib, Md Kamrul Hasan Foysal and Jo Woon Chong

The comfort of apparel is not only a feeling of perception but also a tangible measure. The fit and fabric of clothing can exert a perception of comfort for the wearer, whereas…

Abstract

Purpose

The comfort of apparel is not only a feeling of perception but also a tangible measure. The fit and fabric of clothing can exert a perception of comfort for the wearer, whereas actual comfort largely depends on physiological and emotional soothing. However, there is still no solid work on connecting the bridge between physiological and emotional feelings to the comfort of clothing. In this study, we have conceptualized, formulated and proven the relation between physiological and emotional parameters with clothing fit and fabric to find the true comfort of the wearer.

Design/methodology/approach

A mixed-method research design using physiological and emotional parameters for different fabric and fit combinations were used for this study. The physiological comfort parameters (i.e. heart rate and respiration rate) are extracted from the subjects using gold-standard clinical devices for various fit and fabric combinations. For the emotional response, a survey was conducted for the same subjects wearing all the fit and fabric combinations. Statistical analysis and modeling were performed to obtain the results.

Findings

Physiological indicators such as heart rate are closely linked with user comfort. Due to the limitations in environmental control, the physiological changes obtained did not significantly vary for different fabric and fit combinations of the clothing. However, a significant change in emotional response indicated a definite relationship between different fabric and fit types. Based on the participants’ responses, weather conditions, size of the clothing item, types of fabrics and style also influence the participants’ choice of clothing.

Originality/value

The research was conducted to discover the relation between true comfort (physiological and emotional parameters) and clothing (fit and fabric), which is unique to the field. This study closes the gap and builds up the relationship, which can help introduce clothing comfort to users in the future. The findings of this study help us understand how fabric types (natural or synthetic) and clothing fit types (loose or fitted) can affect physiological and emotional responses, which can provide the consumer with satisfactory clothing with the suitable properties needed.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 September 2024

Chen Liu and Huafeng Feng

To investigate whether the actual effects of eight drape characteristics of virtual fabrics can be manifested in the Style 3D software.

Abstract

Purpose

To investigate whether the actual effects of eight drape characteristics of virtual fabrics can be manifested in the Style 3D software.

Design/methodology/approach

Image analysis was conducted using MATLAB software to obtain the drape characteristics of virtual fabrics. Pair the drape characteristics of the real and virtual fabrics for difference. The S-W method was used to conduct a normality test to obtain the correlation of paired samples. A paired sample t-test was performed to obtain the significance values.

Findings

The simulation restoration performance of the drape coefficient, number of undulations, maximum undulation angle, minimum undulation angle and undulation angle uniformity was good. However, there are differences in the simulation performance of the other three indicators: maximum undulation amplitude, minimum undulation amplitude and undulation amplitude uniformity compared to the drape characteristics of real fabrics.

Originality/value

Provides reference value for the improvement of Style3D software in virtual fabric simulation and finds the main influential parameters and their impact levels that contribute to the realistic representation of virtual fabrics in software. It provides a theoretical basis for course teaching in digital fashion.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Details

Threaded Harmony: A Sustainable Approach to Fashion
Type: Book
ISBN: 978-1-83608-152-4

Article
Publication date: 28 June 2024

Meghana Kammeta and N.K. Palaniswamy

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and…

Abstract

Purpose

In everyday life, people generally wear two layers of clothes (a knitted vest and a knitted t-shirt) during the summer. It is essential to understand which types of innerwear and outerwear maximize comfort. The primary objective of this research is to investigate the influence of layering outerwear on innerwear, as well as the air gap between two layers, on thermal comfort properties.

Design/methodology/approach

In this study, a total of 12 combinations were created from four vest fabrics and three T-shirt fabrics. The thermal properties (thermal conductivity, thermal resistance, thermal absorptivity, thermal diffusion and peak heat flow) were evaluated for the individual inner and outer layers. Each inner layer was layered with an outer layer to observe the effect of layering on the thermal properties. An air gap of 2 mm was introduced between the inner and outer layers to study the effect of air gap on thermal properties.

Findings

Tencel fibre exhibits higher thermal conductivity and absorptivity than cotton and polyester. Upon layering an outer layer on an inner layer, the thermal conductivity and thermal absorptivity increase to a slight extent, thermal resistance and diffusion increase drastically and the peak heat flow reduces. With an air gap between the two layers, the thermal conductivity did not improve, the difference in thermal resistance among all the combinations reduced, the thermal absorptivity of the combination textiles was lower than that of the innerwear alone, the thermal diffusion increased and the peak heat flow diminished for all the combinations.

Practical implications

In practice, this comprehensive thermal comfort analysis provides specific combinations of inner and outer articles of clothing that are most appropriate for enhancing comfort during the summer season.

Originality/value

Though there are many studies on the effect of multilayer fabrics on thermal properties, no extensive research analyses the influence of innerwear and outerwear combinations on thermal comfort properties.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 109