Search results

1 – 10 of 14
Article
Publication date: 9 September 2024

Xilin Xiong, Jingjing Yang, Tongqian Chen and Tong Niu

The purpose of this study is to provide a highly efficient method to obtain the kinetics of the hydrogen evolution reaction (HER) on metal electrodes in an alkaline solution and…

Abstract

Purpose

The purpose of this study is to provide a highly efficient method to obtain the kinetics of the hydrogen evolution reaction (HER) on metal electrodes in an alkaline solution and to analyze the effect of thiourea addition on HER under the same cathodic overpotential.

Design/methodology/approach

A novel method based on hydrogen permeation tests, potentiodynamic polarization tests and electrochemical impedance spectroscopy was put forward to characterize the HER kinetics on metal electrode.

Findings

The study found that adding thiourea accelerated the Volmer, Heyrovsky and Tafel reactions associated with HER. In addition, it reduced the hydrogen surface coverage and increased the hydrogen permeation steady-state current density. As a result, thiourea facilitated HER, promoted the diffusion of hydrogen atoms into iron and reduced the number of hydrogen atoms in the adsorbed state.

Originality/value

This work provides novel insights into the influence of thiourea on HER kinetics, demonstrating that thiourea addition can significantly enhance HER efficiency by altering reaction dynamics and promoting hydrogen atom diffusion into iron. This has implications for hydrogen energy applications, cathodic protection and understanding hydrogen embrittlement mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 May 2024

Gang Wang, Mian Wang, ZiHan Wang, GuangTao Xu, MingHao Zhao and Lingxiao Li

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Abstract

Purpose

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Design/methodology/approach

The surface-modified layer of 18CrNiMo7-6 alloy steel was delaminated to study its hydrogen embrittlement characteristics via hydrogen permeation, electrochemical hydrogen charging and scratch experiments.

Findings

The results showed that the diffusion coefficients of hydrogen in the surface and matrix layers are 3.28 × 10−7 and 16.67 × 10−7 cm2/s, respectively. The diffusible-hydrogen concentration of the material increases with increasing hydrogen-charging current density. For a given hydrogen-charging current density, the diffusible-hydrogen concentration gradually decreases with increasing depth in the surface-modified layer. Fracture toughness decreases with increasing diffusible-hydrogen concentration, so the susceptibility to hydrogen embrittlement decreases with increasing depth in the surface-modified layer.

Originality/value

The reliability of the scratch method in evaluating the fracture toughness of the surface-modified layer material is verified. An empirical formula is given for fracture toughness as a function of diffused-hydrogen concentration.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2024

Dongyang Li, Guanghu Yao, Yuyuan Guan, Yaolei Han, Linya Zhao, Lining Xu and Lijie Qiao

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated…

Abstract

Purpose

In this paper, the authors aim to study the effect of hydrogen on the pitting corrosion behavior of Incoloy 825, a commonly used material for heat exchanger tubes in hydrogenated heat exchangers.

Design/methodology/approach

The pitting initiation and propagation behaviors were investigated by electrochemical and chemical immersion experiments and observed and analyzed by scanning electron microscope and energy dispersive spectrometer methods.

Findings

The results show that hydrogen significantly affects the electrochemical behavior of Incoloy 825; the self-corrosion potential decreased from −197 mV before hydrogen charging to −263 mV, −270 mV and −657 mV after hydrogen charging, and the corrosion current density increased from 0.049 µA/cm2 before hydrogen charging to 2.490 µA/cm2, 2.560 µA/cm2 and 2.780 µA/cm2 after hydrogen charging. The pitting susceptibility of the material increases.

Originality/value

Hydrogen is enriched on the precipitate, and the pitting corrosion also initiates at that location. The synergistic effect of hydrogen and precipitate destroys the passive film on the metal surface and promotes pitting initiation.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 December 2023

Xia Sun, Jianben Xu, Caili Yu and Faai Zhang

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level…

Abstract

Purpose

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level and monomer ratio of the dispersant.

Design/methodology/approach

The dispersant was synthesized by conventional radical polymerization using methacrylic acid, butyl acrylate and dimethylamino ethyl methacrylate as the monomer. It was characterized by Fourier transform infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, gel permeation chromatography and thermogravimetric analysis. The dispersant was used to disperse TiO2, and the performance of the dispersant was evaluated by measuring the viscosity, particle size and dispersive force of the slurry.

Findings

The dispersant exhibited high thermal stability and was successfully anchored to the surface of the TiO2 pigment. When used to disperse a TiO2 slurry, it effectively made the TiO2 slurry more fluid, indicating its strong viscosity-reducing properties. The viscosity, particle sizes and dispersion capabilities of the TiO2 slurry were found to vary depending on the contents and monomer ratios of the dispersant.

Research limitations/implications

P(MAA-BA-DM) dispersant increases the wettability of TiO2 only in oily solvents but not in aqueous solvents.

Practical implications

P(MAA-BA-DM) dispersant makes it easier to disperse TiO2 pigments in oily solvents, increasing the amount of pigment in the solvent and making the preparation of highly pigmented pastes easier.

Originality/value

A dispersant containing suitable carboxyl and tertiary amine groups was initially synthesized to disperse TiO2 in an oily system. The findings are anticipated to be used in the formulation of pigment concentrates, industrial coatings and other solvent-based coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 August 2024

Yang Haoming and Kong Dejun

This study aims to investigate the influences of Al2O3 mass fraction on the corrosive wear and electrochemical behaviors of FeAl–xAl2O3 coatings.

Abstract

Purpose

This study aims to investigate the influences of Al2O3 mass fraction on the corrosive wear and electrochemical behaviors of FeAl–xAl2O3 coatings.

Design/methodology/approach

FeAl–xAl2O3 coatings were prepared on S355 steel by laser cladding to improve its corrosive wear and electrochemical properties.

Findings

The average coefficients of friction and wear rates of FeAl–xAl2O3 coatings are decreased with the Al2O3 mass fraction, and the Al2O3 plays a positive role in the corrosion wear resistance. Moreover, the charge transfer resistance of FeAl–xAl2O3 coatings is increased with the Al2O3 mass fraction, showing the FeAl–15%Al2O3 coating has the best corrosion resistance. The findings show the corrosion resistance of FeAl–15%Al2O3 coating is the highest among the three kinds of coatings.

Originality/value

Al2O3 was first added into FeAl coatings to further improve its corrosive wear and electrochemical properties by laser cladding.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Shengjian Zhang, Min Li, Baoyi Li, Hansen Zhao and Feng Wang

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Abstract

Purpose

To improve the corrosion resistance of magnesium alloys, the construction of protective coatings is necessary to extend the service life of Mg-based materials.

Design/methodology/approach

SiO2 nanoparticles modified by dodecyltrimethoxysilane (DTMS) were added to the PP and a superhydrophobic Mg(OH)2/PP-60mSiO2 composite coating was fabricated on the surface of AZ31 magnesium alloy via the hydrothermal method and subsequently the immersion treatment.

Findings

Hydrophilic SiO2 nanoparticles become hydrophobic after modified by DTMS, showing a higher dispersibility in xylene. By incorporating modified SiO2 nanoparticles into the composite PP coating, the hydrophobicity of the layer was enhanced, resulting in a contact angle of 166.3° and a sliding angle of 3.4°. It also improved the water repellency and durability of the coating. Furthermore, the intermediate layer of Mg(OH)2 significantly strengthened the bond between the PP layer and the substrate. The Mg(OH)2/PP-60mSiO2 composite coating significantly enhances the corrosion resistance of the magnesium alloy by effectively blocking the infiltration of the corrosion anions during corrosion. The corrosion current density of the Mg(OH)2/PP-60mSiO2 composite coating is approximately 8.23 × 10–9 A·cm-2, which can achieve a magnitude three times lower than its substrate, making it a promising surface modification for the Mg alloy.

Originality/value

The composite coating effectively and durably enhances the corrosion resistance of magnesium alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 January 2023

Yangdong Liu, Siyuan Lu, Hongyi Tu, Boyuan Zhang, Yaqin Zhao, Jiasheng He, Liangliang He and Zhenbin Chen

To save the economic cost and improve the performance of enterprises, this study aims to synthesize high performance immobilized penicillin G acylase (PGA) carriers with fast…

Abstract

Purpose

To save the economic cost and improve the performance of enterprises, this study aims to synthesize high performance immobilized penicillin G acylase (PGA) carriers with fast reaction speed, high recovery rate of enzyme activity and good reusability through corresponding theoretical guidance and experimental exploration.

Design methodology approach

A diblock resin was synthesized by reversible addition-fragmentation chain transfer polymerization method using N, N-diethylacrylamide (DEA) and β-hydroxyethyl methacrylate (HEMA) as functional monomers poly(N, N-diethylacrylamide)-b-poly(β-hydroxyethyl methacrylate) (PDEA-b-PHEMA) was obtained, and the effect of the ratio of DEA and HEMA on the activity of PGA was investigated, and the appropriate block ratio of DEA and HEMA was obtained. After that, the competitive rate of HEMA and glycidyl methacrylate (GMA) under the carrier preparation conditions was investigated. Based on the above work, a thermosensitive resin carrier PDEA-b-PHEMA-b-P(HEMA-co-GMA) with different target distances was synthesized, and the chemical structures and molecular weight of copolymers were investigated by hydrogen NMR (1H NMR).

Findings

The lower critical solution temperature of the resin support decreases with the increase of the monomer HEMA in the random copolymerization; the catalytic performance study indicated that the response rate of the immobilized PGA is fast, and the recovery rate of the enzyme activity of the immobilized PGA varies with the distance between the targets. When the molar ratio of HEMA to GMA in the resin block is 8.15:1 [i.e. resin PDEA100-b-PHEMA10-b-P(HEMA65-co-GMA8)], the activity recovery rate of immobilized PGA can reach 50.51%, which was 15.49% higher than that of pure GMA immobilized PGA.

Originality value

This contribution provides a novel carrier for immobilizing PGA. Under the optimal molar ratio, the enzyme activity recovery could be up to 50.51%, which was 15.49% higher than that of PGA immobilized on the carrier with nonregulated distance between two immobilization sites.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 July 2024

Kawaljit Singh Randhawa

This study aims to explore the synthesis, characteristics and utilization of polymer composites integrated with cutting-edge pigments.

Abstract

Purpose

This study aims to explore the synthesis, characteristics and utilization of polymer composites integrated with cutting-edge pigments.

Design/methodology/approach

The incorporation of advanced pigments introduces functionalities such as enhanced mechanical strength, thermal stability, ultraviolet resistance and color stability, thus extending the range of applications in diverse fields including automotive, aerospace, electronics and construction.

Findings

This review discusses the mechanisms underlying the property enhancements achieved through the incorporation of advanced pigments and highlights recent developments in the field.

Originality/value

Polymer composites incorporating advanced pigments have garnered significant attention in recent years because of their potential to enhance various material properties and broaden their applications. This paper explores the fabrication methods of polymer composites reinforced with organic/inorganic advanced pigments in brief along with their characteristics and applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

11

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 August 2024

Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…

Abstract

Purpose

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.

Design/methodology/approach

Review of a series of state of the art research papers on the subject matter.

Findings

This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.

Research limitations/implications

As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).

Practical implications

PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.

Social implications

When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.

Originality/value

NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 14