Search results

1 – 10 of over 1000
Article
Publication date: 7 September 2023

Nor Salwani Hashim, Fatimah De’nan and Nurfarhah Naaim

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural…

Abstract

Purpose

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural framing system that incorporates lightweight load-bearing walls and slabs, and to compare the weight of materials used in cold-formed and hot-finished steel structural systems for affordable housing.

Design/methodology/approach

Four types of models consisting of 243 members were simulated. Model 1 is a cold-formed steel structural framing system, while Model 2 is a hot-finished steel structural framing system. Both Models 1 and 2 use lightweight wall panels and lightweight composite slabs. Models 3 and 4 are made with brick walls and precast reinforced concrete systems, respectively. These structures use different wall and slab materials, namely, brick walls and precast reinforced concrete. The analysis includes bending behavior, buckling resistance, shear resistance and torsional rotation analysis.

Findings

This study found that using thinner steel sections can increase the deflection value. Meanwhile, increasing member length and the ratio of slenderness will decrease buckling resistance. As the applied load increases, buckling deformation also increases. Furthermore, decreasing shear area causes a reduction in shear resistance. Thicker sections and the use of lightweight materials can decrease the torsional rotation value.

Originality/value

The weight comparison of the steel structures shows that Model 1, which is a cold-formed steel structure with lightweight wall panels and lightweight composite slabs, is the most suitable model due to its lightweight and affordability for housing. This model can also be used as a reference for the optimal design of modular structural framing using cold-formed steel materials in the field of civil engineering and as a promotional tool.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Xue Nan, Xuan Chao Huang, Mengyao Huang, Xuefan Wang, Youping Zhu, Yayun Li, Shifei Shen and Ming Fu

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Abstract

Purpose

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Design/methodology/approach

The maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).

Findings

The following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35  g/cm3, the hardness is 45HC and the thickness is 10 mm.

Originality/value

This is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 February 2024

Tong Wen, Litang Wen, Yunxi Zeng and Ke Zhang

External institutional policy and its impact on corporate social responsibility (CSR) have been widely discussed by researchers, but its effect still remains controversial. This…

Abstract

Purpose

External institutional policy and its impact on corporate social responsibility (CSR) have been widely discussed by researchers, but its effect still remains controversial. This study aims to use the minimum wage policy as an illustrative example to analyze its impact on the corporate social responsibility (CSR) of tourist enterprises. Furthermore, the research seeks to examine the boundary conditions that influence the minimum wage’s effect on CSR.

Design/methodology/approach

This paper takes the data of 42 listed tourism companies from 2010 to 2020 in China as samples and uses the mixed OLS regression method and the fixed effects panel model to examine the effect of the minimum wage on CSR.

Findings

Findings show that increasing wages has a significantly negative impact on their total CSR investment. Also, low-operating-capacity enterprises and private enterprises will react more adversely when faced with increasing minimum wages. And found that the increase of minimum wage has no significant negative impact on the strategic social responsibility of tourism enterprises; however, it has a significantly negative impact on their tactical social responsibility. In addition, as far as employees’ rights and interests are concerned, the minimum wage increase has effectively increased employee salaries, but the nonsalary benefits of the employees have significantly decreased.

Originality/value

The contribution of this paper not only expands the research on the antecedents and boundary mechanisms of CSR but also clarifies the specific effect of the rise of the minimum wage on corporate social responsibility; it further deepens the impact of institutional policy factors on CSR, which also opens new perspectives for policy evaluation and provides a theoretical basis for government policymakers.

Article
Publication date: 8 December 2023

Indranil Banik, Arup Kumar Nandi and Bittagopal Mondal

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road…

Abstract

Purpose

The paper aims to identify a suitable generic brake force distribution ratio (β) corresponding to optimal brake design attributes in a diminutive driving range, where road conditions do not exhibit excessive variations. This will intend for an appropriate allocation of brake force distribution (BFD) to provide dynamic stability to the vehicle during braking.

Design/methodology/approach

Two techniques are presented (with and without wheel slip) to satisfy both brake stability and performance while accommodating variations in load sharing and road friction coefficient. Based on parametric optimization of the design variables of hydraulic brake using evolutionary algorithm, taking into account both the laden and unladen circumstances simultaneously, this research develops an improved model for computing and simulating the BFD applied to commercial and passenger vehicles.

Findings

The optimal parameter values defining the braking system have been identified, resulting in effective β = 0.695 which enhances the brake forces at respective axles. Nominal slip of 3.42% is achieved with maximum deceleration of 5.72 m/s2 maintaining directional stability during braking. The results obtained from both the methodologies are juxtaposed and assessed governing the vehicle stability in straight line motion to prevent wheel lock.

Originality/value

Optimization results establish the practicality, efficacy and applicability of the proposed approaches. The findings provide valuable insights for the design and optimization of hydraulic drum brake systems in modern automobiles, which can lead to safer and more efficient braking systems.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

40

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 May 2024

Xi Liang Chen, Zheng Yu Xie, Zhi Qiang Wang and Yi Wen Sun

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the…

Abstract

Purpose

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the overall structural stiffness requirements and sensor performance requirements in robot engineering applications, this paper aims to propose a Y-type six-axis force/torque sensor.

Design/methodology/approach

The performance indicators such as each component sensitivities and stiffnesses of the sensor were selected as optimization objectives. The multiobjective optimization equations were established. A multiple quadratic response surface in ANSYS Workbench was modeled by using the central composite design experimental method. The optimal manufacturing structural parameters were obtained by using multiobjective genetic algorithm.

Findings

The sensor was optimized and the simulation results show that the overload resistance of the sensor is 200%F.S., and the axial stiffness, radial stiffness, bending stiffness and torsional stiffness are 14.981 kN/mm, 16.855 kN/mm, 2.0939 kN m/rad and 6.4432 kN m/rad, respectively, which meet the design requirements, and the sensitivities of each component of the optimized sensor have been well increased to be 2.969, 2.762, 4.010, 2.762, 2.653 and 2.760 times as those of the sensor with initial structural parameters. The sensor prototype with optimized parameters was produced. According to the calibration experiment of the sensor, the maximum Class I and II errors and measurement uncertainty of each force/torque component of the sensor are 1.835%F.S., 1.018%F.S. and 1.606%F.S., respectively. All of them are below the required 2%F.S.

Originality/value

Hence, the conclusion can be drawn that the sensor has excellent comprehensive performance and meets the expected practical engineering requirements.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 August 2023

Evelyne Vanpoucke and Robert D. Klassen

Forced labour is one of the most exploitative practices in supply chains, generating serious human right abuses. The authors seek to understand how relationships for reducing…

Abstract

Purpose

Forced labour is one of the most exploitative practices in supply chains, generating serious human right abuses. The authors seek to understand how relationships for reducing forced labour are influenced by institutional logics. The emerging supply chain efforts of social enterprises offer particularly intriguing approaches, as their social mission can spur creative new approaches and reshape widely adopted management practices.

Design/methodology/approach

The authors study supplier relationships in the smartphone industry and compare the evolving practices of two cases: the first, a growing novel social enterprise; and the second, a high-profile commercial firm that has adopted a progressive role in combating forced labour.

Findings

The underlying institutional logic influenced each firm's willingness to act beyond its direct suppliers and to collaborate in flexible ways that create systematic change. Moreover, while both focal firms had clear, well-documented procedures related to forced labour, the integration, rather than decoupling, of forced labour and general supply chain policies provided a more effective way to reduce the risks of forced labour in social enterprises.

Research limitations/implications

As authors’ comparative case study approach may lack generalizability, future research is needed to broadly test their propositions.

Practical implications

The paper identifies preconditions in terms of institutional logics to successfully reduce the risk of forced labour in supply chains.

Originality/value

This paper discusses how social enterprises can provide a learning laboratory that enables commercial firms to identify options for supplier relationship improvement.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 30 May 2023

Simplice Asongu and Nicholas M. Odhiambo

This study investigates how enhancing information and communication technology (ICT) affects female economic participation in sub-Saharan African nations.

Abstract

Purpose

This study investigates how enhancing information and communication technology (ICT) affects female economic participation in sub-Saharan African nations.

Design/methodology/approach

Three female economic participation indicators are used, namely female labour force participation, female unemployment and female employment rates. The engaged ICT variables are fixed broadband subscriptions, mobile phone penetration and Internet penetration. The Generalized Method of Moments is used for the empirical analysis.

Findings

The following main findings are established: First, there is a (1) negative net effect in the relevance of fixed broadband subscriptions in female labour force participation and female unemployment and (2) positive net effects from the importance of fixed broadband subscriptions on the female employment rate. Secondly, an extended analysis is used to establish thresholds at which the undesirable net negative effect on female labour force participation can be avoided. From the corresponding findings, a fixed broadband subscription rate of 9.187 per 100 people is necessary to completely dampen the established net negative effect. Hence, the established threshold is the critical mass necessary for the enhancement of fixed broadband subscriptions to induce an overall positive net effect on the female labour force participation rate.

Originality/value

This study complements the extant literature by assessing how increasing penetration levels of ICT affect female economic inclusion and by extension, thresholds necessary for the promotion of ICT to increase female economic inclusion.

Details

African Journal of Economic and Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-0705

Keywords

1 – 10 of over 1000