Search results

1 – 10 of 77
Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2023

Matthew Philip Masterton, David Malcolm Downing, Bill Lozanovski, Rance Brennan B. Tino, Milan Brandt, Kate Fox and Martin Leary

This paper aims to present a methodology for the detection and categorisation of metal powder particles that are partially attached to additively manufactured lattice structures…

61

Abstract

Purpose

This paper aims to present a methodology for the detection and categorisation of metal powder particles that are partially attached to additively manufactured lattice structures. It proposes a software algorithm to process micro computed tomography (µCT) image data, thereby providing a systematic and formal basis for the design and certification of powder bed fusion lattice structures, as is required for the certification of medical implants.

Design/methodology/approach

This paper details the design and development of a software algorithm for the analysis of µCT image data. The algorithm was designed to allow statistical probability of results based on key independent variables. Three data sets with a single unique parameter were input through the algorithm to allow for characterisation and analysis of like data sets.

Findings

This paper demonstrates the application of the proposed algorithm with three data sets, presenting a detailed visual rendering derived from the input image data, with the partially attached particles highlighted. Histograms for various geometric attributes are output, and a continuous trend between the three different data sets is highlighted based on the single unique parameter.

Originality/value

This paper presents a novel methodology for non-destructive algorithmic detection and categorisation of partially attached metal powder particles, of which no formal methods exist. This material is available to download as a part of a provided GitHub repository.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 September 2021

Radhia Chabbi, Noureddine Ferhoune and Fouzia Bouabdallah

This research aims to study the materials that compose older reinforced concrete bridges which are damaged and degrading to explain the mechanisms and origins of various…

97

Abstract

Purpose

This research aims to study the materials that compose older reinforced concrete bridges which are damaged and degrading to explain the mechanisms and origins of various disorders. Therefore, this work will contribute to providing answers on the capacity of nondestructive evaluation method during the diagnosis. In addition to the characterization of affected structures, it will aim to provide effective solutions for different serious pathologies.

Design/methodology/approach

In this context, two bridges located on NH16 and NH21, respectively, were studied in Annaba city (north-east Algeria), specifically in El-Hadjar municipality located in the central industrial zone of Pont-Bouchet. This study makes it possible to make conclusions from the in-depth diagnosis based on disorders exposition causes and mechanical characteristics evolution by non-destructive testing (NDT) tools. Furthermore, solutions are proposed, including conservation maintenance of these degraded structures.

Findings

All degradations can be the result of several factors: either human (poor design) or chemical (surface water, wastewater and groundwater quality (acidic or basic)). In addition to other natural causes (geological formations, flood phenomena or climate), NDT tools play a major role in the evaluating mechanical performance of degraded structures (resistance and hardness).

Research limitations/implications

The NDT techniques can be transmitted to civil engineering experts because their training is limited regarding mechanical and structural construction.

Practical implications

NDT tools are the most suitable for in-situ assessing, and the concrete constructions health state, so far from financial problems.

Social implications

Degraded bridge diagnosis by NDT testing is necessary for a thorough safety evaluation (mechanical performance, strength and deformability), to protect human lives and design durability.

Originality/value

This is an original paper which contains new information at different scales and from special fields, based on an evaluation using NDT tools on real degraded structures. It can be used to improve the knowledge of materials employed in a bridge without performing expensive direct tests or the need for destroying it.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 7 November 2023

Metin Sabuncu and Hakan Özdemir

This study aims to identify leather type and authenticity through optical coherence tomography.

Abstract

Purpose

This study aims to identify leather type and authenticity through optical coherence tomography.

Design/methodology/approach

Optical coherence tomography images taken from genuine and faux leather samples were used to create an image dataset, and automated machine learning algorithms were also used to distinguish leather types.

Findings

The optical coherence tomography scan results in a different image based on leather type. This information was used to determine the leather type correctly by optical coherence tomography and automatic machine learning algorithms. Please note that this system also recognized whether the leather was genuine or synthetic. Hence, this demonstrates that optical coherence tomography and automatic machine learning can be used to distinguish leather type and determine whether it is genuine.

Originality/value

For the first time to the best of the authors' knowledge, spectral-domain optical coherence tomography and automated machine learning algorithms were applied to identify leather authenticity in a noncontact and non-invasive manner. Since this model runs online, it can readily be employed in automated quality monitoring systems in the leather industry. With recent technological progress, optical coherence tomography combined with automated machine learning algorithms will be used more frequently in automatic authentication and identification systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 April 2024

Ahmad Honarjoo and Ehsan Darvishan

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of…

Abstract

Purpose

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of repairing and rehabilitating massive bridges and buildings is very high, highlighting the need to monitor the structures continuously. One way to track the structure's health is to check the cracks in the concrete. Meanwhile, the current methods of concrete crack detection have complex and heavy calculations.

Design/methodology/approach

This paper presents a new lightweight architecture based on deep learning for crack classification in concrete structures. The proposed architecture was identified and classified in less time and with higher accuracy than other traditional and valid architectures in crack detection. This paper used a standard dataset to detect two-class and multi-class cracks.

Findings

Results show that two images were recognized with 99.53% accuracy based on the proposed method, and multi-class images were classified with 91% accuracy. The low execution time of the proposed architecture compared to other valid architectures in deep learning on the same hardware platform. The use of Adam's optimizer in this research had better performance than other optimizers.

Originality/value

This paper presents a framework based on a lightweight convolutional neural network for nondestructive monitoring of structural health to optimize the calculation costs and reduce execution time in processing.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 October 2023

Dragan D. Milašinović

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Abstract

Purpose

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Design/methodology/approach

The problem is formulated on the basis of the rheological-dynamic analogy (RDA). In this study, changes in creep coefficient, Poisson's ratio, damage variables, modulus of elasticity, strength and angle of internal friction as a function of porosity are defined by P and S wave velocities. The RDA model provides a description of the degradation process of material properties from their peak state to their ultimate values using void volume fraction (VVF).

Findings

Compared to numerous versions of acoustic emission tracking developed to analyze the behavior of total wave propagation in inhomogeneous media with density variations, the proposed model is comprehensive in interpretation and consistent with physical understanding. The comparison of the damage variables with the theoretical variables under the assumption of spherical voids in the spherical representative volume element (RVE) shows a satisfactory agreement of the results for all analyzed samples if the maximum porosities are used for comparison.

Originality/value

The paper presents a new mathematical-physical method for examining the effect of porosity on the characteristics of hardened concrete. Porosity is essentially related to density variations. Therefore, it was logical to define the limit values of porosity using the strain energy density.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2023

Qaiser Uz Zaman Khan, Muhammad Farhan and Ali Raza

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of…

Abstract

Purpose

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.

Design/methodology/approach

Beam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.

Findings

For torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.

Originality/value

Effect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 December 2022

Noha M. Hassan, Ameera Hamdan, Farah Shahin, Rowaida Abdelmaksoud and Thurya Bitar

To avoid the high cost of poor quality (COPQ), there is a constant need for minimizing the formation of defects during manufacturing through defect detection and process…

Abstract

Purpose

To avoid the high cost of poor quality (COPQ), there is a constant need for minimizing the formation of defects during manufacturing through defect detection and process parameters optimization. This research aims to develop, design and test a smart system that detects defects, categorizes them and uses this knowledge to enhance the quality of subsequent parts.

Design/methodology/approach

The proposed system integrates data collected from the deep learning module with the machine learning module to develop and improve two regression models. One determines if set process parameters would yield a defective product while the second model optimizes them. The deep learning model utilizes final product images to categorize the part as defective or not and determines the type of defect based on image analysis. The developed framework of the system was applied to the forging process to determine its feasibility during actual manufacturing.

Findings

Results reveal that implementation of such a smart process would lead to significant contributions in enhancing manufacturing processes through higher production rates of acceptable products and lower scrap rates or rework. The role of machine learning is evident due to numerous benefits which include improving the accuracy of the regression model prediction. This artificial intelligent system enhances itself by learning which process parameters could lead to a defective product and uses this knowledge to adjust the process parameters accordingly overriding any manual setting.

Research limitations/implications

The proposed system was applied only to the forging process but could be extended to other manufacturing processes.

Originality/value

This paper studies how an artificial intelligent (AI) system can be developed and used to enhance the yield of good products.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Access

Year

Last 12 months (77)

Content type

Article (77)
1 – 10 of 77