Search results

1 – 10 of over 1000
Article
Publication date: 20 March 2024

Vinod Bhatia and K. Kalaivani

Indian railways (IR) is one of the largest railway networks in the world. As a part of its strategic development initiative, demand forecasting can be one of the indispensable…

Abstract

Purpose

Indian railways (IR) is one of the largest railway networks in the world. As a part of its strategic development initiative, demand forecasting can be one of the indispensable activities, as it may provide basic inputs for planning and control of various activities such as coach production, planning new trains, coach augmentation and quota redistribution. The purpose of this study is to suggest an approach to demand forecasting for IR management.

Design/methodology/approach

A case study is carried out, wherein several models i.e. automated autoregressive integrated moving average (auto-ARIMA), trigonometric regressors (TBATS), Holt–Winters additive model, Holt–Winters multiplicative model, simple exponential smoothing and simple moving average methods have been tested. As per requirements of IR management, the adopted research methodology is predominantly discursive, and the passenger reservation patterns over a five-year period covering a most representative train service for the past five years have been employed. The relative error matrix and the Akaike information criterion have been used to compare the performance of various models. The Diebold–Mariano test was conducted to examine the accuracy of models.

Findings

The coach production strategy has been proposed on the most suitable auto-ARIMA model. Around 6,000 railway coaches per year have been produced in the past 3 years by IR. As per the coach production plan for the year 2023–2024, a tentative 6551 coaches of various types have been planned for production. The insights gained from this paper may facilitate need-based coach manufacturing and optimum utilization of the inventory.

Originality/value

This study contributes to the literature on rail ticket demand forecasting and adds value to the process of rolling stock management. The proposed model can be a comprehensive decision-making tool to plan for new train services and assess the rolling stock production requirement on any railway system. The analysis may help in making demand predictions for the busy season, and the management can make important decisions about the pricing of services.

Details

foresight, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 27 March 2024

Xiaomei Liu, Bin Ma, Meina Gao and Lin Chen

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey…

25

Abstract

Purpose

A time-varying grey Fourier model (TVGFM(1,1,N)) is proposed for the simulation of variable amplitude seasonal fluctuation time series, as the performance of traditional grey models can't catch the time-varying trend well.

Design/methodology/approach

The proposed model couples Fourier series and linear time-varying terms as the grey action, to describe the characteristics of variable amplitude and seasonality. The truncated Fourier order N is preselected from the alternative order set by Nyquist-Shannon sampling theorem and the principle of simplicity, then the optimal Fourier order is determined by hold-out method to improve the robustness of the proposed model. Initial value correction and the multiple transformation are also studied to improve the precision.

Findings

The new model has a broader applicability range as a result of the new grey action, attaining higher fitting and forecasting accuracy. The numerical experiment of a generated monthly time series indicates the proposed model can accurately fit the variable amplitude seasonal sequence, in which the mean absolute percentage error (MAPE) is only 0.01%, and the complex simulations based on Monte-Carlo method testify the validity of the proposed model. The results of monthly electricity consumption in China's primary industry, demonstrate the proposed model catches the time-varying trend and has good performances, where MAPEF and MAPET are below 5%. Moreover, the proposed TVGFM(1,1,N) model is superior to the benchmark models, grey polynomial model (GMP(1,1,N)), grey Fourier model (GFM(1,1,N)), seasonal grey model (SGM(1,1)), seasonal ARIMA model seasonal autoregressive integrated moving average model (SARIMA) and support vector regression (SVR).

Originality/value

The parameter estimates and forecasting of the new proposed TVGFM are studied, and the good fitting and forecasting accuracy of time-varying amplitude seasonal fluctuation series are testified by numerical simulations and a case study.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 24 April 2024

Haiyan Song and Hanyuan Zhang

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Abstract

Purpose

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Design/methodology/approach

A narrative approach is taken in this review of the current body of knowledge.

Findings

Significant methodological advancements in tourism demand modelling and forecasting over the past two decades are identified.

Originality/value

The distinct characteristics of the various methods applied in the field are summarised and a research agenda for future investigations is proposed.

目的

本文旨在对先前关于旅游需求建模和预测的研究进行叙述性回顾并对未来潜在发展进行展望。

设计/方法

本文采用叙述性回顾方法对当前知识体系进行了评论。

研究结果

本文确认了过去二十年旅游需求建模和预测方法论方面的重要进展。

独创性

本文总结了该领域应用的各种方法的独特特征, 并对未来研究提出了建议。

Objetivo

El objetivo de este documento es ofrecer una revisión narrativa de la investigación previa sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros.

Diseño/metodología/enfoque

En esta revisión del marco actual de conocimientos sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros,se adopta un enfoque narrativo.

Resultados

Se identifican avances metodológicos significativos en la modelización y previsión de la demanda turística en las dos últimas décadas.

Originalidad

Se resumen las características propias de los diversos métodos aplicados en este campo y se propone una agenda de investigación para futuros trabajos.

Open Access
Article
Publication date: 21 August 2023

Michele Bufalo and Giuseppe Orlando

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this…

Abstract

Purpose

This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this study is twofold: in terms of forecast accuracy and in terms of parsimony (both from the perspective of the data and the complexity of the modeling), especially when a regular pattern in the time series is disrupted. This study shows that the CIR# not only performs better than the considered baseline models but also has a much lower error than other additional models or approaches reported in the literature.

Design/methodology/approach

Typically, tourism demand tends to follow regular trends, such as low and high seasons on a quarterly/monthly level and weekends and holidays on a daily level. The data set consists of nights spent in Italy at tourist accommodation establishments as collected on a monthly basis by Eurostat before and during the COVID-19 pandemic breaking regular patterns.

Findings

Traditional tourism demand forecasting models may face challenges when massive amounts of search intensity indices are adopted as tourism demand indicators. In addition, given the importance of accurate forecasts, many studies have proposed novel hybrid models or used various combinations of methods. Thus, although there are clear benefits in adopting more complex approaches, the risk is that of dealing with unwieldy models. To demonstrate how this approach can be fruitfully extended to tourism, the accuracy of the CIR# is tested by using standard metrics such as root mean squared errors, mean absolute errors, mean absolute percentage error or average relative mean squared error.

Research limitations/implications

The CIR# model is notably simpler than other models found in literature and does not rely on black box techniques such as those used in neural network (NN) or data science-based models. The carried analysis suggests that the CIR# model outperforms other reference predictions in terms of statistical significance of the error.

Practical implications

The proposed model stands out for being a viable option to the Holt–Winters (HW) model, particularly when dealing with irregular data.

Social implications

The proposed model has demonstrated superiority even when compared to other models in the literature, and it can be especially useful for tourism stakeholders when making decisions in the presence of disruptions in data patterns.

Originality/value

The novelty lies in the fact that the proposed model is a valid alternative to the HW, especially when the data are not regular. In addition, compared to many existing models in the literature, the CIR# model is notably simpler and more transparent, avoiding the “black box” nature of NN and data science-based models.

设计/方法/方法

一般来说, 旅游需求往往遵循规律的趋势, 例如季度/月的淡季和旺季, 以及日常的周末和假期。该数据集包括欧盟统计局在打破常规模式的2019冠状病毒病大流行之前和期间每月收集的在意大利旅游住宿设施度过的夜晚。

目的

本研究旨在通过一个名为cir#的非线性单因素随机模型来预测意大利游客住宿设施的过夜住宿情况。这项研究的贡献是双重的:在预测准确性方面和在简洁方面(从数据和建模复杂性的角度来看), 特别是当时间序列中的规则模式被打乱时。我们表明, cir#不仅比考虑的基线模型表现更好, 而且比文献中报告的其他模型或方法具有更低的误差。

研究结果

当大量搜索强度指标被作为旅游需求指标时, 传统的旅游需求预测模型将面临挑战。此外, 鉴于准确预测的重要性, 许多研究提出了新的混合模型或使用各种方法的组合。因此, 尽管采用更复杂的方法有明显的好处, 但风险在于处理难使用的模型。为了证明这种方法能有效地扩展到旅游业, 使用RMSE、MAE、MAPE或AvgReIMSE等标准指标来测试cir#的准确性。

研究局限/启示

cir#模型明显比文献中发现的其他模型简单, 并且不依赖于黑盒技术, 例如在神经网络或基于数据科学的模型中使用的技术。所进行的分析表明, cir#模型在误差的统计显著性方面优于其他参考预测。

实际意义

这个模型作为Holt-Winters模型的一个拟议模型, 特别是在处理不规则数据时。

社会影响

即使与文献中的其他模型相比, 所提出的模型也显示出优越性, 并且在数据模式中断时对旅游利益相关者做出决策特别有用。

创意/价值

创新之处在于所提出的模型是Holt-Winters模型的有效替代方案, 特别是当数据不规律时。此外, 与文献中的许多现有模型相比, cir#模型明显更简单、更透明, 避免了神经网络和基于数据科学的模型的“黑箱”性质。

Diseño/metodología/enfoque

Normalmente, la demanda turística tiende a seguir tendencias regulares, como temporadas altas y bajas a nivel trimestral/mensual y fines de semana y festivos a nivel diario. El conjunto de datos consiste en las pernoctaciones en Italia en establecimientos de alojamiento turístico recogidas mensualmente por Eurostat antes y durante la pandemia de COVID-19, rompiendo los patrones regulares.

Objetivo

El presente estudio pretende predecir las pernoctaciones en Italia en establecimientos de alojamiento turístico mediante un modelo estocástico no lineal de un solo factor denominado CIR#. La contribución de este estudio es doble: en términos de precisión de la predicción y en términos de parsimonia (tanto desde la perspectiva de los datos como de la complejidad de la modelización), especialmente cuando un patrón regular en la serie temporal se ve interrumpido. Demostramos que el CIR# no sólo aplica mejor que los modelos de referencia considerados, sino que también tiene un error mucho menor que otros modelos o enfoques adicionales de los que se informa en la literatura.

Resultados

Los modelos tradicionales de previsión de la demanda turística pueden enfrentarse a desafíos cuando se adoptan cantidades masivas de índices de intensidad de búsqueda como indicadores de la demanda turística. Además, dada la importancia de unas previsiones precisas, muchos estudios han propuesto modelos híbridos novedosos o han utilizado diversas combinaciones de métodos. Así pues, aunque la adopción de enfoques más complejos presenta ventajas evidentes, el riesgo es el de enfrentarse a modelos poco manejables. Para demostrar cómo este enfoque puede extenderse de forma fructífera al turismo, se comprueba la precisión del CIR# utilizando métricas estándar como RMSE, MAE, MAPE o AvgReIMSE.

Limitaciones/implicaciones de la investigación

El modelo CIR# es notablemente más sencillo que otros modelos encontrados en la literatura y no se basa en técnicas de caja negra como las utilizadas en los modelos basados en redes neuronales o en la ciencia de datos. El análisis realizado sugiere que el modelo CIR# supera a otras predicciones de referencia en términos de significación estadística del error.

Implicaciones prácticas

El modelo propuesto destaca por ser una opción viable al modelo Holt-Winters, sobre todo cuando se trata de datos irregulares.

Implicaciones sociales

El modelo propuesto ha demostrado su superioridad incluso cuando se compara con otros modelos de la bibliografía, y puede ser especialmente útil para los agentes del sector turístico a la hora de tomar decisiones cuando se producen alteraciones en los patrones de datos.

Originalidad/valor

La novedad radica en que el modelo propuesto es una alternativa válida al Holt-Winters especialmente cuando los datos no son regulares. Además, en comparación con muchos modelos existentes en la literatura, el modelo CIR# es notablemente más sencillo y transparente, evitando la naturaleza de “caja negra” de los modelos basados en redes neuronales y en ciencia de datos.

Open Access
Article
Publication date: 25 April 2024

Adrián Mendieta-Aragón, Julio Navío-Marco and Teresa Garín-Muñoz

Radical changes in consumer habits induced by the coronavirus disease (COVID-19) pandemic suggest that the usual demand forecasting techniques based on historical series are…

Abstract

Purpose

Radical changes in consumer habits induced by the coronavirus disease (COVID-19) pandemic suggest that the usual demand forecasting techniques based on historical series are questionable. This is particularly true for hospitality demand, which has been dramatically affected by the pandemic. Accordingly, we investigate the suitability of tourists’ activity on Twitter as a predictor of hospitality demand in the Way of Saint James – an important pilgrimage tourism destination.

Design/methodology/approach

This study compares the predictive performance of the seasonal autoregressive integrated moving average (SARIMA) time-series model with that of the SARIMA with an exogenous variables (SARIMAX) model to forecast hotel tourism demand. For this, 110,456 tweets posted on Twitter between January 2018 and September 2022 are used as exogenous variables.

Findings

The results confirm that the predictions of traditional time-series models for tourist demand can be significantly improved by including tourist activity on Twitter. Twitter data could be an effective tool for improving the forecasting accuracy of tourism demand in real-time, which has relevant implications for tourism management. This study also provides a better understanding of tourists’ digital footprints in pilgrimage tourism.

Originality/value

This study contributes to the scarce literature on the digitalisation of pilgrimage tourism and forecasting hotel demand using a new methodological framework based on Twitter user-generated content. This can enable hospitality industry practitioners to convert social media data into relevant information for hospitality management.

研究目的

2019冠狀病毒病引致消費者習慣有根本的改變; 這些改變顯示,根據歷史序列而運作的慣常需求預測技巧未必是正確的。這不確性尤以受到大流行極大影響的酒店服務需求為甚。因此,我們擬探討、若把在推特網站上的旅遊活動視為聖雅各之路 (一個重要的朝聖旅遊聖地) 酒店服務需求的預測器,這會否是合適的呢?

研究設計/方法/理念

本研究比較 SARIMA 時間序列模型與附有外生變數 (SARIMAX)模型兩者在預測旅遊及酒店服務需求方面的表現。為此,研究人員收集在推特網站上發佈的資訊,作為外生變數進行研究。這個樣本涵蓋於2018年1月至2022年9月期間110,456個發佈資訊。

研究結果

研究結果確認了傳統的時間序列模型,若涵蓋推特網站上的旅遊活動,則其對旅遊需求方面的預測會得到顯著的改善。推特網站的數據,就改善預測實時旅遊需求的準確度,或許可成為有效的工具; 而這發現對旅遊管理會有一定的意義。本研究亦讓我們進一步瞭解朝聖旅遊方面旅客的數碼足跡。

研究的原創性

現存文獻甚少探討朝聖旅遊的數字化,而本研究不但在這方面充實了有關的文獻,還使用了一個根據推特網站上使用者原創內容嶄新的方法框架,進行分析和探討。這會幫助酒店從業人員把社交媒體數據轉變為可供酒店管理之用的合宜資訊。

Details

European Journal of Management and Business Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2444-8451

Keywords

Article
Publication date: 12 July 2023

XiaoXi Wu, Jinlian Shi and Haitao Xiong

This paper aims to analyze the research highlights, evolutionary process and future research directions in the field of tourism forecasting.

Abstract

Purpose

This paper aims to analyze the research highlights, evolutionary process and future research directions in the field of tourism forecasting.

Design/methodology/approach

This study used CiteSpace to conduct a bibliometric analysis of 1,213 tourism forecasting articles.

Findings

The results show that tourism forecasting research has experienced three stages. The institutional collaboration includes transnational collaboration and domestic institutional collaboration. Collaboration between countries still needs to be strengthened. The authors’ collaboration is mainly based on on-campus collaboration. Articles with high co-citation are primarily published in core tourism journals and other relevant publications. The research content mainly pertains to tourism demand, revenue management, hotel demand and tourist volumes. Ex ante forecasting during the COVID-19 pandemic has broadened existing tourism forecasting research. The future forecasting research focuses on the rational use of big data, improving the accuracy of models and enhancing the credibility of forecasting results.

Originality/value

This paper uses CiteSpace to analyze tourism forecasting articles to obtain future research trends, which supplements existing research and provides directions for future research.

意图

本文旨在分析旅游预测领域的研究重点、演化过程和未来的研究方向。

设计/理论/方法

本研究使用 CiteSpace 软件对 1213 篇旅游预测文章进行了文 献计量学分析。

结果

结果表明, 旅游预测研究经历三个阶段。机构合作包含国际机构合作和 国内机构合作, 需要持续加强国家之间的合作, 作者之间的合作多以校内合作为 主。高引用文章不仅发表在旅游领域的核心期刊还发表在其他专业的核心期刊上。 旅游预测研究的主要内容为旅游需求、收入管理、酒店需求和游客量。新冠疫情 期间的事前预测拓宽了现有的旅游预测研究。未来预测的研究重点在于合理利用 大数据, 提高模型的准确定以及提高预测结果的可信度。

创意/价值

本文使用 CiteSpace 分析旅游预测文章得到未来研究趋势, 既是对 现有研究的补充, 又为今后的研究提供方向。

Objetivo

Este artículo pretende analizar los aspectos más destacados de la investigación, el proceso evolutivo y las futuras orientaciones de la investigación en el campo de la previsión turística.

Diseño/metodología/enfoque

Este estudio utilizó CiteSpace para realizar un análisis bibliométrico de 1213 artículos sobre previsión turística.

Resultados

Los resultados muestran que la investigación sobre previsión turística ha experimentado tres etapas. La colaboración institucional incluye la colaboración transnacional y la colaboración institucional nacional. La colaboración entre países aún debe reforzarse. La colaboración entre autores se basa principalmente en la colaboración dentro del campus. Los artículos con una alta cocitación se publican principalmente en las principales revistas de turismo y en otras publicaciones relevantes. El contenido de la investigación se refiere principalmente a la demanda turística, el revenue management, la demanda hotelera y los volúmenes turísticos. La previsión previa y durante la pandemia de la COVID-19 ha ampliado la investigación existente sobre previsión turística. La futura investigación sobre previsiones se centra en el uso racional de los big data, la mejora de la precisión de los modelos y el aumento de la credibilidad de los resultados de las previsiones.

Originalidad/valor

Este artículo utiliza CiteSpace para analizar artículos de previsión turística con el fin de obtener futuras tendencias de investigación, lo que complementa la investigación existente y proporciona orientaciones para futuras investigaciones.

Article
Publication date: 1 September 2023

Shaghayegh Abolmakarem, Farshid Abdi, Kaveh Khalili-Damghani and Hosein Didehkhani

This paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long…

106

Abstract

Purpose

This paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long short-term memory (LSTM).

Design/methodology/approach

First, data are gathered and divided into two parts, namely, “past data” and “real data.” In the second stage, the wavelet transform is proposed to decompose the stock closing price time series into a set of coefficients. The derived coefficients are taken as an input to the LSTM model to predict the stock closing price time series and the “future data” is created. In the third stage, the mean-variance portfolio optimization problem (MVPOP) has iteratively been run using the “past,” “future” and “real” data sets. The epsilon-constraint method is adapted to generate the Pareto front for all three runes of MVPOP.

Findings

The real daily stock closing price time series of six stocks from the FTSE 100 between January 1, 2000, and December 30, 2020, is used to check the applicability and efficacy of the proposed approach. The comparisons of “future,” “past” and “real” Pareto fronts showed that the “future” Pareto front is closer to the “real” Pareto front. This demonstrates the efficacy and applicability of proposed approach.

Originality/value

Most of the classic Markowitz-based portfolio optimization models used past information to estimate the associated parameters of the stocks. This study revealed that the prediction of the future behavior of stock returns using a combined wavelet-based LSTM improved the performance of the portfolio.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 7 July 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important…

Abstract

Purpose

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important issue to investors and policymakers. This study aims to examine neural networks (NNs) for office property price index forecasting from 10 major Chinese cities for July 2005–April 2021.

Design/methodology/approach

The authors aim at building simple and accurate NNs to contribute to pure technical forecasts of the Chinese office property market. To facilitate the analysis, the authors explore different model settings over algorithms, delays, hidden neurons and data-spitting ratios.

Findings

The authors reach a simple NN with three delays and three hidden neurons, which leads to stable performance of about 1.45% average relative root mean square error across the 10 cities for the training, validation and testing phases.

Originality/value

The results could be used on a standalone basis or combined with fundamental forecasts to form perspectives of office property price trends and conduct policy analysis.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 12 March 2024

Aslina Nasir and Yeny Nadira Kamaruzzaman

This study was conducted to forecast the monthly number of tuna landings between 2023 and 2030 and determine whether the estimated number meets the government’s target.

Abstract

Purpose

This study was conducted to forecast the monthly number of tuna landings between 2023 and 2030 and determine whether the estimated number meets the government’s target.

Design/methodology/approach

The ARIMA and seasonal ARIMA (SARIMA) models were employed for time series forecasting of tuna landings from the Malaysian Department of Fisheries. The best ARIMA (p, d, q) and SARIMA(p, d, q) (P, D, Q)12 model for forecasting were determined based on model identification, estimation and diagnostics.

Findings

SARIMA(1, 0, 1) (1, 1, 0)12 was found to be the best model for forecasting tuna landings in Malaysia. The result showed that the fluctuation of monthly tuna landings between 2023 and 2030, however, did not achieve the target.

Research limitations/implications

This study provides preliminary ideas and insight into whether the government’s target for fish landing stocks can be met. Impactful results may guide the government in the future as it plans to improve the insufficient supply of tuna.

Practical implications

The outcome of this study could raise awareness among the government and industry about how to improve efficient strategies. It is to ensure the future tuna landing meets the targets, including increasing private investment, improving human capital in catch and processing, and strengthening the system and technology development in the tuna industry.

Originality/value

This paper is important to predict the trend of monthly tuna landing stock in the next eight years, from 2023 to 2030, and whether it can achieve the government’s target of 150,000 metric tonnes.

Details

International Journal of Social Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0306-8293

Keywords

Open Access
Article
Publication date: 21 March 2024

Giovanni De Luca and Monica Rosciano

The tourist industry has to adopt a big data-driven foresight approach to enhance decision-making in a post-COVID international landscape still marked by significant uncertainty…

Abstract

Purpose

The tourist industry has to adopt a big data-driven foresight approach to enhance decision-making in a post-COVID international landscape still marked by significant uncertainty and in which some megatrends have the potential to reshape society in the next decades. This paper, considering the opportunity offered by the application of the quantitative analysis on internet new data sources, proposes a prediction method using Google Trends data based on an estimated transfer function model.

Design/methodology/approach

The paper uses the time-series methods to model and predict Google Trends data. A transfer function model is used to transform the prediction of Google Trends data into predictions of tourist arrivals. It predicts the United States tourism demand in Italy.

Findings

The results highlight the potential expressed by the use of big data-driven foresight approach. Applying a transfer function model on internet search data, timely forecasts of tourism flows are obtained. The two scenarios emerged can be used in tourism stakeholders’ decision-making process. In a future perspective, the methodological path could be applied to other tourism origin markets, to other internet search engine or other socioeconomic and environmental contexts.

Originality/value

The study raises awareness of foresight literacy in the tourism sector. Secondly, it complements the research on tourism demand forecasting by evaluating the performance of quantitative forecasting techniques on new data sources. Thirdly, it is the first paper that makes the United States arrival predictions in Italy. Finally, the findings provide immediate valuable information to tourism stakeholders that could be used to make decisions.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

1 – 10 of over 1000