Search results

1 – 10 of 12
Article
Publication date: 13 May 2024

Fay Rhianna Claybrook, Darren John Southee and Mazher Mohammed

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a…

Abstract

Purpose

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a product context is limited by the appropriateness of available materials, with polyurethane foams being the current gold standard material. The purpose of this study is to investigate additively manufactured flexible printing of scaffold structures as an alternative.

Design/methodology/approach

In this study, this study investigates triply periodic minimal surface (TPMS) structures, including Gyroid, Diamond and Schwarz P formed in thermoplastic polyurethane (TPU), as a possible alternative. Each TPMS structure was fabricated using material extrusion additive manufacturing and evaluated to ASTM mechanical testing standard for polymers. This study focuses attention to TPMS structures fabricated for a fixed unit cell size of 10 mm and examine the compressive properties for changes in the scaffold porosity for samples fabricated in TPU with a shore hardness of 63A and 90A.

Findings

It was discovered that for increased porosity there was a measured reduction in the load required to deform the scaffold. Additionally, a complex relationship between the shore hardness and the stiffness of a structure. It was highlighted that through the adjustment of porosity, the compressive strength required to deform the scaffolds to a point of densification could be controlled and predicted with high repeatability.

Originality/value

The results indicate the ability to tailor the scaffold design parameters using both 63A and 90A TPU material, to mimic the loading properties of common polyurethane foams. The use of these structures indicates a next generation of tailored cushioning using additive manufacturing techniques by tailoring both geometry and porosity to loading and compressive strengths.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2024

Jianjun Yao and Yingzhao Li

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios…

Abstract

Purpose

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios such as illumination change, rapid rotation and large angle of view variation. In contrast, learning-based keypoints exhibit higher repetition but entail considerable computational costs. This paper proposes an innovative algorithm for keypoint extraction, aiming to strike an equilibrium between precision and efficiency. This paper aims to attain accurate, robust and versatile visual localization in scenes of formidable complexity.

Design/methodology/approach

SiLK-SLAM initially refines the cutting-edge learning-based extractor, SiLK, and introduces an innovative postprocessing algorithm for keypoint homogenization and operational efficiency. Furthermore, SiLK-SLAM devises a reliable relocalization strategy called PCPnP, leveraging progressive and consistent sampling, thereby bolstering its robustness.

Findings

Empirical evaluations conducted on TUM, KITTI and EuRoC data sets substantiate SiLK-SLAM’s superior localization accuracy compared to ORB-SLAM3 and other methods. Compared to ORB-SLAM3, SiLK-SLAM demonstrates an enhancement in localization accuracy even by 70.99%, 87.20% and 85.27% across the three data sets. The relocalization experiments demonstrate SiLK-SLAM’s capability in producing precise and repeatable keypoints, showcasing its robustness in challenging environments.

Originality/value

The SiLK-SLAM achieves exceedingly elevated localization accuracy and resilience in formidable scenarios, holding paramount importance in enhancing the autonomy of robots navigating intricate environments. Code is available at https://github.com/Pepper-FlavoredChewingGum/SiLK-SLAM.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 16 May 2024

Alain Verbeke

“First principles” of international business (IB) thinking should be applied systematically when assessing the functioning of internationally operating firms. The most important…

Abstract

“First principles” of international business (IB) thinking should be applied systematically when assessing the functioning of internationally operating firms. The most important first principle is that entrepreneurially oriented firms seek to create, deliver and capture economic value through cross-border linkages. Such linkages invariably require complementary resources from a variety of parties with idiosyncratic vulnerabilities to be meshed. Starting from first principles allows bringing to light evidence-based insight. For instance, most companies are not global and even the world’s largest firms rarely change the location of key strategic functions. International new ventures (INVs), emerging economy multinational enterprises (MNEs) and family firms face unique vulnerabilities but also command resources that can be used to create value across borders. The quest for “optimal” international diversification appears to be a futile academic exercise, and in emerging economies with institutional voids, relational networks – and more broadly, informal institutions – are unlikely to function as scalable substitutes for formal institutions. In global value chains (GVCs), many lead firms and their partners have been able to craft governance mechanisms that reduce bounded rationality and bounded reliability challenges, and it is also critical for them to use governance as a tool to create entrepreneurial space. Finally, many of the world’s largest companies have been on successful trajectories toward reducing their climate change footprint for a few decades. But these firm-specific trajectories are fraught with challenges and cannot just be imposed via unilateral, macro-level targets decided upon by individuals and institutions lacking a clear understanding of innovation and capital expenditure processes in business.

Article
Publication date: 13 May 2024

Anand S. Patel and Kaushik M. Patel

India liberalized its economy in 1991, which resulted in intense global competition, quality-conscious and demanding customers. Additionally, significant technological…

12

Abstract

Purpose

India liberalized its economy in 1991, which resulted in intense global competition, quality-conscious and demanding customers. Additionally, significant technological advancements lead to enhancements in products and processes. These forced Indian organizations to adopt innovative business strategies in the past 30 years. Meanwhile, the Lean Six Sigma methodology has significantly grown with vast applicability during the past 30 years. Thus, the purpose of this study is to develop the learning on Lean Six Sigma methodology in the Indian context through investigation of literature.

Design/methodology/approach

A three-stage systematic literature review approach was adopted to investigate the literature during the present study. In total, 187 articles published in 62 journals/conference proceedings from 2005 to 2022 (18 years) were shortlisted. The first part of the article summarizes the significant milestones towards the quality journey in the Indian context, along with the evolution of the Lean Six Sigma methodology. The second part examines the shortlisted papers on Lean Six Sigma frameworks, their applicability in industrial sectors, performance metrics, outcomes realized, publication trends, authorship patterns and leading researchers from the Indian perspective.

Findings

Lean Six Sigma has emerged as a highly acclaimed and structured business improvement strategy worldwide. The Indian economy has seen remarkable growth in the past decade and is one of the fastest-growing economies in the 21st century. Lean Six Sigma implementation in India has significantly increased from 2014 onward. The study revealed that researchers have proposed several different frameworks for Lean Six Sigma implementation, the majority of which are conceptual. Furthermore, the balanced applicability of Lean Six Sigma in manufacturing and service sectors was observed with the highest implementation in the health-care sector. Additionally, the widely adopted tools, techniques along with performance metrics exploring case studies were reported along with a summary of eminent and leading researchers in the Indian context.

Research limitations/implications

This study is confined to reviewed papers as per the research criteria with a significant focus on the Indian context and might have missed some papers due to the adopted papers selection strategy.

Originality/value

The present study is one of the initial attempts to investigate the literature published on Lean Six Sigma in the Indian context, including perspective on the Indian quality movement. Therefore, the present study will provide an understanding of Lean Six Sigma methodology in the Indian context to graduating students in engineering and management and entry-level executives. The analysis and findings on Lean Six Sigma frameworks, research approach, publications details, etc., will be helpful to potential research scholars and academia. Additionally, analysis of case studies on Lean Six Sigma implementation by Indian industries will assist the managers and professionals in decision making.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 21 April 2022

Zachary Ball, Jonathan Cagan and Kenneth Kotovsky

This study aims to gain a deeper understanding of the industry practice to guide the formation of support tools with a rigorous theoretical backing. Cross-functional teams are an…

Abstract

Purpose

This study aims to gain a deeper understanding of the industry practice to guide the formation of support tools with a rigorous theoretical backing. Cross-functional teams are an essential component in new product development (NPD) of complex products to promote comprehensive coverage of product design, marketing, sales, support as well as many other activities of business. Efficient use of teams can allow for greater technical competency coverage, increased creativity, reduced development times and greater consideration of ideas from a variety of stakeholders. While academics continually aspire to propose methods for improved team composition, there exists a gap between research directions and applications found within industry practice.

Design/methodology/approach

Through interviewing product development managers working across a variety of industries, this paper investigates the common practices of team utilization in an organizational setting. Following these interviews, this paper proposes a conceptual two-dimensional management support model aggregating the primary drivers of team success and providing direction to systematically address features of team management and composition.

Findings

Based on this work, product managers are recommended to continually address the positioning of members throughout the entire NPD process. In the early stages, individuals are to be placed to work on project components with explicit consideration toward the perceived complexity of tasks and individual competency. Throughout the development process, individuals’ positions vary based on new information while continued emphasis is placed on maintaining a shared understanding.

Originality/value

Bridging the gap between theory and application within product development teams is a necessary step toward improved product develop. Industrial settings require practical solutions that can be applied economically and efficiently within their organization. Theoretical reflections postulated by academia support improved team design; however, to achieve true success, they must be applicable when considering product development.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 12