Search results

1 – 10 of 863
Content available
Article
Publication date: 21 July 2022

Amar Messas, Karim Benyahi, Arezki Adjrad, Youcef Bouafia and Sarah Benakli

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a…

Abstract

Purpose

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a capacity ratio necessary to reach a structural plastic mechanism. To find the capacity ratio allowing to achieve a fairly ductile behavior in reinforced concrete frames, it is necessary to validate this concept by a non-linear static analysis (push-over). However, this analysis is carried out by the use of the ETABS software, and by the introduction into the beams and columns of plastic hinges according to FEMA-356 code.

Design/methodology/approach

This approach makes it possible to assess seismic performance, which facilitates the establishment of a system for detecting the plasticization mechanisms of structures. It is also necessary to use a probabilistic method allowing to treat the dimensioning by the identification of the most probable mechanisms and to take only those that contribute the most to the probability of global failure of the structural system.

Findings

In this study, three reinforced concrete frame buildings with different numbers of floors were analyzed by varying the capacity ratio of the elements. The results obtained indicate that it is strongly recommended to increase the ratio of the resistant moments of the columns on those of the beams for the Algerian seismic regulation (RPA code), knowing that the frameworks in reinforced concrete are widespread in the country.

Originality/value

The main interest of this paper is to criticize the resistance condition required by RPA code, which must be the subject of particular attention to reach a mechanism of favorable collapse. This study recommends, on the basis of a reliability analysis, the use of a capacity dimensioning ratio greater than or equal to two, making it possible to have a sufficiently low probability of failure to ensure a level of security for users.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 16 June 2022

Qinghong Fu

This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure (FSACWSS) for the high-speed railway subgrade through…

Abstract

Purpose

This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure (FSACWSS) for the high-speed railway subgrade through on-site tracking, monitoring and post-construction investigation.

Design/methodology/approach

Based on the working state of the waterproof sealing structure, the main functional characteristics were analyzed, and a kind of roller-compacted high elastic modulus asphalt concrete (HEMAC) was designed and evaluated by several groups of laboratory tests. It is applied to an engineering test section, and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.

Findings

Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits. The water content in the subgrade of the test section is maintained at 8–18%, which is less affected by the weather. However, the water content in the subgrade bed of the contrast section is 10–35%, which fluctuates significantly with the weather. The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section. The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section, but all of them meet the limit requirements. The asphalt concrete in the test section is in good contact with the base, and there are no diseases such as looseness or spalling. Only a number of cracks are found at the joints of the base plates. However, there are more longitudinal and lateral cracks in the contrastive section, which seriously affects the waterproof and sealing effects. Besides, the asphalt concrete is easier to repair, featuring good maintainability.

Originality/value

This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 25 February 2014

10

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 2
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 August 2001

78

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 February 2001

55

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 March 2002

81

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 1
Type: Research Article
ISSN: 0965-3562

Content available
Article
Publication date: 1 December 2000

Charles D. Wrege

1143

Abstract

Details

Journal of Management History, vol. 6 no. 8
Type: Research Article
ISSN: 1355-252X

Open Access
Article
Publication date: 13 June 2016

Marcus Achenbach and Guido Morgenthal

The purpose of this paper is to develop a method suitable for the design of reinforced concrete columns subjected to a standard fire.

2993

Abstract

Purpose

The purpose of this paper is to develop a method suitable for the design of reinforced concrete columns subjected to a standard fire.

Design/methodology/approach

The Zone Method – a ’simplified calculation method” included in Eurocode 2 – has been developed by Hertz as a manual calculation scheme for the check of fire resistance of concrete sections. The basic idea is to disregard the thermal strains and to calculate the resistance of a cross-section by reducing the concrete cross-section by a “damaged zone”. It is assumed that all fibers can reach their ultimate, temperature dependent strength. Therefore, it is a plastic concept; the information on the state of strain is lost. The calculation of curvatures and deflections is thus only possible by making further assumptions. Extensions of the zone method toward a general calculation method, suitable for the implementation in commercial design software and using the temperature dependent stress–strain curves of the Advanced Calculation Method, have been developed in Germany. The extension by Cyllok and Achenbach is presented in detail. The necessary assumptions of the Zone Method are reviewed, and an improved proposal for the consideration of the reinforcement in this extended Zone Method is presented.

Findings

The principles and assumptions of the Zone Method proposed by Hertz can be validated.

Originality/value

An extension of the Zone Method suitable for the implementation in design software is proposed.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Content available
Article
Publication date: 1 December 2001

217

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 863