Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 30 November 2021

Koraljka Golub, Pawel Michal Ziolkowski and Goran Zlodi

The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with…

2731

Abstract

Purpose

The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with particular reference to subject searching, as well as the use of controlled vocabularies, with the purpose of identifying which improvements of the search interfaces are needed to ensure high-quality information retrieval for the end user.

Design/methodology/approach

In the first step, a set of 21 search interface criteria was identified, based on related research and current standards in the domain of cultural heritage knowledge organization. Secondly, a complete set of Swedish museums that provide online access to their collections was identified, comprising nine cross-search services and 91 individual museums' websites. These 100 websites were each evaluated against the 21 criteria, between 1 July and 31 August 2020.

Findings

Although many standards and guidelines are in place to ensure quality-controlled subject indexing, which in turn support information retrieval of relevant resources (as individual or full search results), the study shows that they are not broadly implemented, resulting in information retrieval failures for the end user. The study also demonstrates a strong need for the implementation of controlled vocabularies in these museums.

Originality/value

This study is a rare piece of research which examines subject searching in online museums; the 21 search criteria and their use in the analysis of the complete set of online collections of a country represents a considerable and unique contribution to the fields of knowledge organization and information retrieval of cultural heritage. Its particular value lies in showing how the needs of end users, many of which are documented and reflected in international standards and guidelines, should be taken into account in designing search tools for these museums; especially so in subject searching, which is the most complex and yet the most common type of search. Much effort has been invested into digitizing cultural heritage collections, but access to them is hindered by poor search functionality. This study identifies which are the most important aspects to improve.

Open Access
Book part
Publication date: 17 August 2021

Mike Hynes

Abstract

Details

The Social, Cultural and Environmental Costs of Hyper-Connectivity: Sleeping Through the Revolution
Type: Book
ISBN: 978-1-83909-976-2

Open Access
Article
Publication date: 18 April 2023

Worapan Kusakunniran, Pairash Saiviroonporn, Thanongchai Siriapisith, Trongtum Tongdee, Amphai Uraiverotchanakorn, Suphawan Leesakul, Penpitcha Thongnarintr, Apichaya Kuama and Pakorn Yodprom

The cardiomegaly can be determined by the cardiothoracic ratio (CTR) which can be measured in a chest x-ray image. It is calculated based on a relationship between a size of heart…

2685

Abstract

Purpose

The cardiomegaly can be determined by the cardiothoracic ratio (CTR) which can be measured in a chest x-ray image. It is calculated based on a relationship between a size of heart and a transverse dimension of chest. The cardiomegaly is identified when the ratio is larger than a cut-off threshold. This paper aims to propose a solution to calculate the ratio for classifying the cardiomegaly in chest x-ray images.

Design/methodology/approach

The proposed method begins with constructing lung and heart segmentation models based on U-Net architecture using the publicly available datasets with the groundtruth of heart and lung masks. The ratio is then calculated using the sizes of segmented lung and heart areas. In addition, Progressive Growing of GANs (PGAN) is adopted here for constructing the new dataset containing chest x-ray images of three classes including male normal, female normal and cardiomegaly classes. This dataset is then used for evaluating the proposed solution. Also, the proposed solution is used to evaluate the quality of chest x-ray images generated from PGAN.

Findings

In the experiments, the trained models are applied to segment regions of heart and lung in chest x-ray images on the self-collected dataset. The calculated CTR values are compared with the values that are manually measured by human experts. The average error is 3.08%. Then, the models are also applied to segment regions of heart and lung for the CTR calculation, on the dataset computed by PGAN. Then, the cardiomegaly is determined using various attempts of different cut-off threshold values. With the standard cut-off at 0.50, the proposed method achieves 94.61% accuracy, 88.31% sensitivity and 94.20% specificity.

Originality/value

The proposed solution is demonstrated to be robust across unseen datasets for the segmentation, CTR calculation and cardiomegaly classification, including the dataset generated from PGAN. The cut-off value can be adjusted to be lower than 0.50 for increasing the sensitivity. For example, the sensitivity of 97.04% can be achieved at the cut-off of 0.45. However, the specificity is decreased from 94.20% to 79.78%.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 August 2023

Paul Rosenstein

The academic library’s physical capacity and its service obligations to local users structured the traditional print collection. Largely freed of these constraints, the digital…

Abstract

Purpose

The academic library’s physical capacity and its service obligations to local users structured the traditional print collection. Largely freed of these constraints, the digital collection manager enjoys unprecedented freedoms but now contends with a collection susceptible to resource sprawl and scope ambiguity. This exploratory study aims to consider the possibility that intra-field social processes help to structure and routinize digital collection practice.

Design/methodology/approach

Lacking the constraints to which print collections are subject, electronic resource and digital library collections are more likely to reflect idiosyncratic institutional interests and therefore, to demonstrate significant variation. Evidence of homogeneity may suggest the influence of heretofore underexplored social structures. To determine the extent of such homogeneity, the author performed exploratory/descriptive content analyses on ten electronic resource collection development policies and six digital library collection development policies.

Findings

The data reveal among both the electronic resource and digital library collection policies significant uniformity. Content analyses demonstrate consistent themes (e.g. media, audience, selection priorities, etc.) and rhetoric. These findings lend support to the study’s central hypothesis regarding latent social structures. Analyses also reveal a set of unanticipated constraints unique to digital collection management.

Originality/value

Despite the breadth and maturity of literature addressing the Digital Turn in academic librarianship, relatively little attention has been paid to the social dimensions of collection management. This work represents an important corrective and suggests new theoretical approaches to the study of digital collection practice.

Details

Digital Transformation and Society, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0761

Keywords

Open Access
Article
Publication date: 5 June 2020

Zijun Jiang, Zhigang Xu, Yunchao Li, Haigen Min and Jingmei Zhou

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road…

1044

Abstract

Purpose

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.

Design/methodology/approach

This study included three steps, Step 1, extraction of feature points. After getting the image, the local features in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of feature points and trajectory generation.

Findings

Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.

Originality/value

The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of the lane-level positioning in some critical ITS applications.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 21 April 2022

Warot Moungsouy, Thanawat Tawanbunjerd, Nutcha Liamsomboon and Worapan Kusakunniran

This paper proposes a solution for recognizing human faces under mask-wearing. The lower part of human face is occluded and could not be used in the learning process of face…

2640

Abstract

Purpose

This paper proposes a solution for recognizing human faces under mask-wearing. The lower part of human face is occluded and could not be used in the learning process of face recognition. So, the proposed solution is developed to recognize human faces on any available facial components which could be varied depending on wearing or not wearing a mask.

Design/methodology/approach

The proposed solution is developed based on the FaceNet framework, aiming to modify the existing facial recognition model to improve the performance of both scenarios of mask-wearing and without mask-wearing. Then, simulated masked-face images are computed on top of the original face images, to be used in the learning process of face recognition. In addition, feature heatmaps are also drawn out to visualize majority of parts of facial images that are significant in recognizing faces under mask-wearing.

Findings

The proposed method is validated using several scenarios of experiments. The result shows an outstanding accuracy of 99.2% on a scenario of mask-wearing faces. The feature heatmaps also show that non-occluded components including eyes and nose become more significant for recognizing human faces, when compared with the lower part of human faces which could be occluded under masks.

Originality/value

The convolutional neural network based solution is tuned up for recognizing human faces under a scenario of mask-wearing. The simulated masks on original face images are augmented for training the face recognition model. The heatmaps are then computed to prove that features generated from the top half of face images are correctly chosen for the face recognition.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 9 February 2021

Roland Izuagbe, Olajumoke Rebecca Olawoyin, Christopher Nkiko, Promise Ifeoma Ilo, Felicia Yusuf, Mercy Iroaganachi, Julie Ilogho and Goodluck Israel Ifijeh

The purpose of the study is to ascertain whether or not faculty members would be motivated to use e-Databases for research considering the impact of the Technology Acceptance…

1795

Abstract

Purpose

The purpose of the study is to ascertain whether or not faculty members would be motivated to use e-Databases for research considering the impact of the Technology Acceptance Model2 (TAM2) cognitive instrumental processes of job relevance, output quality and result demonstrability.

Design/methodology/approach

The survey research design was applied. The selection of samples was based on a multistage sampling technique involving; purposive, simple/systematic random and total enumeration procedures. Five colleges and departments each were selected from the three universities that provided the setting for the conduct of this study, out of which a sample of 135 was drawn from the total population of 209. The questionnaire method was used for data gathering. Ninety-five percent return rate of the administered instrument was observed. Descriptive and inferential statistical tools were employed for data analyses.

Findings

Job relevance, output quality and result demonstrability are motivators of faculty use of e-Databases for research with result demonstrability wielding the strongest influence. Use of e-Databases for research is based on the usefulness level perceived of them. Faculty are highly predisposed to using the technology for research with the chances of getting published in reputable journal outlets ranked highest among other factors that influence faculty use of e-Databases.

Originality/value

The conceptualization of TAM2 cognitive instrumental processes as system characteristics and motivators of e-Databases use among faculty towards research engagement advances the understanding of intention to use e-Databases for research.

Open Access
Article
Publication date: 21 July 2020

Prajowal Manandhar, Prashanth Reddy Marpu and Zeyar Aung

We make use of the Volunteered Geographic Information (VGI) data to extract the total extent of the roads using remote sensing images. VGI data is often provided only as vector…

1247

Abstract

We make use of the Volunteered Geographic Information (VGI) data to extract the total extent of the roads using remote sensing images. VGI data is often provided only as vector data represented by lines and not as full extent. Also, high geolocation accuracy is not guaranteed and it is common to observe misalignment with the target road segments by several pixels on the images. In this work, we use the prior information provided by the VGI and extract the full road extent even if there is significant mis-registration between the VGI and the image. The method consists of image segmentation and traversal of multiple agents along available VGI information. First, we perform image segmentation, and then we traverse through the fragmented road segments using autonomous agents to obtain a complete road map in a semi-automatic way once the seed-points are defined. The road center-line in the VGI guides the process and allows us to discover and extract the full extent of the road network based on the image data. The results demonstrate the validity and good performance of the proposed method for road extraction that reflects the actual road width despite the presence of disturbances such as shadows, cars and trees which shows the efficiency of the fusion of the VGI and satellite images.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 17 July 2020

Sheryl Brahnam, Loris Nanni, Shannon McMurtrey, Alessandra Lumini, Rick Brattin, Melinda Slack and Tonya Barrier

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex…

2290

Abstract

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 9 May 2022

Kevin Wang and Peter Alexander Muennig

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

1786

Abstract

Purpose

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

Design/methodology/approach

This study is a narrative review of the literature.

Findings

The body of medical knowledge has grown far too large for human clinicians to parse. In theory, electronic health records could augment clinical decision-making with electronic clinical decision support systems (CDSSs). However, computer scientists and clinicians have made remarkably little progress in building CDSSs, because health data tend to be siloed across many different systems that are not interoperable and cannot be linked using common identifiers. As a result, medicine in the USA is often practiced inconsistently with poor adherence to the best preventive and clinical practices. Poor information technology infrastructure contributes to medical errors and waste, resulting in suboptimal care and tens of thousands of premature deaths every year. Taiwan’s national health system, in contrast, is underpinned by a coordinated system of electronic data systems but remains underutilized. In this paper, the authors present a theoretical path toward developing artificial intelligence (AI)-driven CDSS systems using Taiwan’s National Health Insurance Research Database. Such a system could in theory not only optimize care and prevent clinical errors but also empower patients to track their progress in achieving their personal health goals.

Originality/value

While research teams have previously built AI systems with limited applications, this study provides a framework for building global AI-based CDSS systems using one of the world’s few unified electronic health data systems.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of over 1000