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Abstract
Purpose – Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to
adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common
techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can
not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the
problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.
Design/methodology/approach – This study included three steps, Step 1, extraction of feature points. After getting the image, the local features
in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a
random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of
feature points and trajectory generation.
Findings – Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two
consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.
Originality/value – The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of
the lane-level positioning in some critical ITS applications.

Keywords Feature extraction, Image matching, Intelligent transportation systems, Intelligent vehicles, Position measurement
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1. Introduction

Precise vehicle localization is one of the basic and urgent
problems for most of the intelligent transportation system
(ITS) applications. Through vehicle localization, many
parameters associated with the working state of vehicles, such
as vehicle position, velocity, acceleration and trajectory, can be
obtained. These parameters are closely related to many
security-themed applications in ITS. The literature (Boukerche
et al., 2008) lists over 10 applications closely related to the
localization in ITS, which include routing navigation, data
dissemination, map localization, adapted cruise control,
cooperative intersection safety, blind crossing, platooning,
vehicle collision warning, vision enhancement and automatic
parking. It also points out that some applications such as
vehicle collision warning, vision enhancement and automatic
parking need sub-meter resolution. If precise localization
information of all vehicles can be obtained in real-time, it will
bring about revolutionary changes in future traffic

management. This can be specifically manifested in five aspects
as follows:
1 In the event of a potential collision, for example, the

potential risk for separated bicycle paths (Xu C et al.,
2016) and the merging vehicle’s rear-end crash risk, an
early warning can be made accurately (Weng et al., 2015);

2 The accidents occurred in the past can be accurately
reproduced through the recorded precise location data;

3 Some microscopic vehicle behaviors such as lane change,
overtaking and motion in the wrong direction can be
identified;

4 More timely and detailed road traffic situation can be
obtained; and

5 Many new intelligent transportation applications can be
invented through the accumulated precise vehicle
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trajectory data. In a word, if the real-time and precise
localization problem were solved, it will speed up the step
of “internet of vehicles” from theory to application. In this
paper, the existing vehicle localization methods have been
summarized through literature reviews.

1.1 Global navigation satellite system localization
GNSS stands for the global navigation satellite system, which
refers to all satellite navigation systems, including global,
regional and enhancements systems, such as the American
global positioning system (GPS), the Russian GLONASS, the
European Galileo, China’s BeiDou satellite navigation system
and related enhancement systems, for example, the American
wide-area augmentation system, Europe’s European
Geostationary Navigation Overlay Service, Japan’s multi-
functional transport satellite augmentation system, etc (Zaidi
and Suddle, 2006).
GPS is currently the most common method of GNSS

localization with the advantages of low cost, wide applications, all-
weather working, etc. However, it also has limitations. On one
hand, the satellite signals are blocked in the places of tunnels,
mountain roads and city roads with skyscrapers surround, where
GPS receiver cannot receive the satellite localization signals, on the
other hand, the accuracy of GPS localization is typically between
20-30m, which cannot achieve the accuracy at lane level. Aiming
at the defects of the GPS, the differential GPS (DGPS) was
designed as an improved method, which calculates pseudo-range
correction in each satellite based on the reference station in the
ground, and these corrections complete improvements in timing of
the GPS satellite signals, track and atmosphere error. In general,
the best localization accuracy of the DGPS is approximately 1 m.
Unfortunately, when the number of satellites is seven or less due to
buildings or trees, the average errors aremore than ameter (Rezaei
and Sengupta, 2007). The accuracy and reliability are still not high
enough for some security applications such as collision warning,
platooning and automatic parking.

1.2 Dead reckoning localization
The dead reckoning (DR) is a classic localization technology
independent of the GNSS. For a moving object within a two-
dimensional space, if its initial position and all the
displacements at any previous time are known, the current
position of the object can be calculated by the initial position
added with accumulated displacement vectors, which relies on
the inertial sensors such as odometer, gyroscopes,
accelerometers and electronic compass to obtain the
displacement and heading of a vehicle. The implementation of
the DR system has two requirements as follows: the first is that
the initial position of a moving target should be informed
and the second is that the distance and direction of a moving
target at all moments should be obtained (King et al., 2006). As
the DR localization is an accumulation process, each estimated
position of the target depends on the localization result of the
previous moment. So, the measurement error and calculation
error will accumulate with time elapsing, leading to a
continuous decline in the DR localization. The DR system
features high autonomy, high security, good resistance to radio
interference, all-weather working, etc. Besides, it only uses its
own inertial measurement components to deduce position,

speed and other navigation parameters. However, the
accumulated errors of theDR system grow rapidly over time, so
that it is unsuitable for long-term performance. Besides, it
needs a long time for initial alignment, especially for position
measurement (Bevly and Parkinson, 2007).

1.3 Integrated localization combined global positioning
systemwith dead reckoning
As GPS and the DR are complementary, the localization
precision can be improved by combining the two techniques.
As an external input, the GPS information corrects the
positioning result of DR frequently when the vehicle is in
movement, which controls the accumulated error of DR as
time going. On the contrary, the output of DR can solve the
problems of the GPS in a short time, such as the loss of GPS
signal and cycle slip in a complex environment, which
strengthens the system’s anti-interference ability. The mutual
penetration and combination of the two systems’ information
can play a role in the complementary performance and improve
the overall navigation precision and performance of the system
(Krakiwsky et al., 1988). The overall performance after the
combination of two systems is far better than each separate
system, which becomes a hotspot in this research filed. There
are several ways to fuse the localization information from
multiple sensors in the GPS/DR integrated systems. Then, the
fusion ways generally have three types, namely, non-coupling,
tightly-coupling and loose-coupling. Among them, loose-
coupling fusion has the best fault-tolerance performance, which
uses local filter equations to fuse the output of the GPS and DR
subsystems, and uses the main filter to fuse the output of the
local filters. This approach not only reduces the system
dimensions with the advantages of small calculation amount
and parallel processing but also decreases the coupling degree
of each subsystem. One sensor fault will not make a serious
impact on other subsystems’ filter equations. The federal filter
proposed by Carlson is a kind of loose-coupling fusion model,
which attracts widespread attention because of its flexibility,
small calculation amount and good fault-tolerance
performance (Carlson, 1996).

1.4Mapmatching localization
Map matching is a localization correction method based on
software technology. Its basic idea is to associate a vehicle
localization trajectory from a GPS receiver with the road
information in an electronicmap database, and thus, determine
the vehicle position relative to the map (Chausse et al., 2005).
The map matching applications are based on two premises.
One is that all vehicles are always traveling on road; and the
other is that the accuracy of the electronic map data should be
higher than that of the estimated position of the road-vehicle
navigation system. When the above conditions are met, the
localization trajectory is compared with the road information
through an appropriate matching process to determine the
vehicle’s most likely traveling road section and its most likely
position in this section. The map matching algorithm has a
close relationship with the digital map (Jagadeesh et al., 2005).
The electronic map must have the correct network topology
and high accuracy to complete the map matching, otherwise, it
will lead to falsematches (Deusch et al., 2013).
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1.5 Localization based image/video information
Images, videos and data processing techniques are often used
for real-time localization in the field of autonomous vehicles
and mobile robotics. These localization methods can be
roughly divided into three categories as follows:
1 passive localization method based on video surveillance

(Chapuis et al., 2002);
2 ego-localization based on scene matching (Uchiyama

et al., 2009); and
3 ego-localization method based on visual odometry (VO)

(Sakai et al., 2010).

The video surveillance based passive localization tracks vehicle
by cameras mounted on road infrastructures, which detects the
target vehicle through background subtraction and calculates
the vehicle’s actual position through the camera calibration.
However, it is difficult for the vehicle to obtain its own
localization information from the video surveillance system.
The localization method based on scene matching calculates
the position of the vehicle by searching the most similar image
in a pre-recorded image database or street view database with
the captured images in real-time. The ego-localization method
based on VO calculates the relative motion displacement
between the two consecutive frames of the vehicle through
matching overlapping areas among multi-frame images
captured by the camera. Because of its relatively simple
structure and high reliability, VO has been used in a wide
variety of robotic applications such as on the Mars exploration
rovers (Maimone et al., 2007).

1.6 Radio localization
Radio localization is the process of finding the location of
something through the use of radio waves. Generally, it first
measures the transmission parameters of the radio waves,
which travel from the known stationary objects to the moving
target object such as the difference of time or phase and the
variation of amplitude or frequency. From these
parameters, the distance difference between the known objects
and the target object, the moving direction of the target object
can be calculated, which can be used to determine or predict
the location of the moving target object (Sun et al., 2005). One
typical application of radio localization is the American 911
telephone system, which can acquire the localization of the
person who dialing a mobile phone. In addition, there are other
radio localization methods such as ultra-wideband, wireless-
fidelity and cooperative localization method based on vehicular
ad hoc network (Bahl and Padmanabhan, 2000; Lee and
Scholtz, 2002; Cheng et al., 2005; Thangavelu et al., 2007).
However, if this method is applied in vehicle localization, it
requires a large number of roadside stations and needs high
investment costs, which is clearly not suitable for vehicles’ long-
distance localization.
This paper presents a precise vehicle ego-localizationmethod

using feature matching of pavement images, which are
captured by the camera installed at the rear of the car. On this
basis, the local features of the pavement image are extracted
based on speeded up robust features (SURF) descriptors, and
the relative displacement and the rotation angle between two
consecutive frames are obtained through the image matching.
Finally, the trajectory of the vehicle is extracted and the precise

localization is achieved. The organization of this paper is as
follows: in Section 2, we provide a simple literature review of
the inertial navigation system (INS) assisted by the GPS and
the INS assisted by the vision. Section 3 will introduce the
experimental equipment and explain the flow of the entire
algorithm. Section 4 illustrates a matching algorithm based on
road image features. Section 5 describes the vehicle trajectory
estimation algorithm. The experiment is described in Section 6,
and Section 7 gives the conclusion.

2. Related work

Tao Wu and Ranganathan (2013) proposes a vehicle
localization method using road markings. In his paper, the road
markings (such as arrows, speed limits and zebras) were
surveyed beforehand, and the corresponding GPS latitude and
longitude are stored in the database. The pavement videos were
captured by a color camera mounted on the roof of a car. With
the developed detecting algorithms, the road markings were
recognized and matched with those stored in the database.
Once the road markings were matched successfully, the
position of the vehicle can be calculated based on the stored
GPS data. Tao Wu indicated that the proposed methods can
achieve positioning accuracy at lane-level. It belongs to the
global positioning method and requires surveying the positions
of all road markings in advance, obviously not suitable for long-
distance vehicle localization.
Chen proposed a perceptual fusion three-dimensional

localization scheme for autonomous driving scenes using
LIDAR and vision sensors, etc., efficiently generating three-
dimensional candidate frames from a three-dimensional point
cloud and combining features from multiple views divided by
region get up and finish positioning (Chen et al., 2017).
Experiments show that this approach outperforms the state-of-
the-art by around 25 and 30% AP on the tasks of three-
dimensional localization and three-dimensional detection. In
addition, for two-dimensional detection, this approach obtains
10.3% higher AP than the state-of-the-art on the hard data
among the LIDAR-based methods. However, the price of
LIDAR is relatively expensive, so LIDAR-based vehicle
positioningmethods can be difficult to implement.
Hiroyuki (Uchiyama et al., 2009) from Nagoya University

presents a vehicle ego-localization method using streetscape
image sequences. The image sequences of two in-vehicle cameras
are matched with a database that contains a sequence of
streetscape images and their corresponding positions. A
sequential image matching algorithm is developed to search for
the image similarity with the captured image in the database.
Eventually, the vehicle position is calculated based on
triangulation using the positions stored in the database and the
viewing directions of the two cameras. Based on experiments, the
authors proved that the positioning accuracy of the proposed
method is better than the GPS, and the horizontal positioning
accuracy error is less than 1.5m. This method requires
establishing a huge database containing a large amount of
streetscape images and it can hardly guarantee the system can
work in real-time.
Vu et al. (2012) from the University of California, Riverside

presents a sensor fusion technique that uses the computer vision
and the differential pseudo-range DGPSmeasurements to aid the

Matching of pavement images

Zijun Jiang et al.

Journal of Intelligent and Connected Vehicles

Volume 3 · Number 2 · 2020 · 37–47

39



INS. The proposed method mainly solve the localization problem
in a challenging environment where the GPS signal is limited or
unreliable. In Anh Vu’s paper traffic lights were surveyed as
landmarks and their location data is stored in a database in
advance. The localization method uses satellite pseudo-range
time-of-arrival measurements, Doppler measurements between
satellites and the GPS antenna and previously mapped visual
landmarks on an image taken by a camera thatmeasures the angle-
of-arrival to correct the INS. The experimental results have shown
that the combination of the DGPS and a single visual feature
measurement at 1Hz is sufficient to achieve localization accuracy,
which is typically less than 1 m. This method heavily relies on the
aid of traffic lights, while there are almost no traffic lights on the
expressway or rural roads.
Pink et al. (2009) propose a vehicle localization method based

on aerial image matching. The method combines ideas from
research on VO with a feature map that is automatically
generated from aerial images into the visual navigation system.
The presented method detects the road markings from the aerial
images and the features of roadmarkings are extracted to create a
feature map. Two forward-looking cameras are fixed on the roof
of a vehicle to capture the road images, an image processing
algorithm is developed to match features from the cameras to
previously generated feature map to obtain a precise vehicle
localization result.
Turgay and Ahmed (2011) build a framework that uses stereo

camera images and freely available satellite and road maps to
automatically obtain accurate global vehicle localization. The
forward pavement images are captured by two cameras on a car,
the three-dimensional point cloud of the road surface is
reconstructed based on the theory of stereoscopic. With the
three-dimensional point cloud, the top-view images of the road
are used to match with the satellite images. At first, the accurate
vehicle poses, high-resolution top view images, map overlays and
three-dimensional reconstructions of the road and its
surroundings are all obtained.
In addition, Dean et al. (2008) propose a vehicle location

method based on road terrain parameters including the road
height change, the derivative of height and superelevation
changes. Claus Brenner presents a vehicle localization method
using landmarks obtained by the LIDAR mobile mapping
system. Using associated landmark pairs and an estimation
approach, the positions of the vehicle are obtained. From the
literature listed above, we can find out most vision-based vehicle
localization methods belong to the global positioning method,
which needs to build a huge database previously and it is difficult
to achieve real-time and long-distance localization of vehicles.

3. System setup and algorithm processing

This section describes the system setup and an overview of the
proposed algorithm. The smart car uses the 2 million pixels
Basler aca1600-60gc camera (60 frames/s, adjustable) on the
campus of Chang’an University to capture the road image.
Excessive vehicle speed will result in blurred pictures, which
cannot detect and match the interesting points correctly. So,
the vehicle speed is maintained in the range of 20-30 km/h, as
shown in Figure 1. The data offline processing is implemented
byMATLABR2016a.

The general idea of this study is to achieve the precise vehicle
localization using local feature matching of pavement images, as
shown in Figure 2. First, the initial position of the vehicle is got by a
GPS receiver. Second, we can get the top view of the pavement
image. Then, we use the SURF operator to extract feature points of
the two consecutive pavement images after correction to match
feature points one by one and use a random sample consensus
(RANSAC) algorithm to eliminate the false matching points.
Finally, the relative translation and rotation offsets between the two
consecutive images are computed with the selectedmatched points.
With the known initial position and relative offsets between any two
consecutive images, the vehicle’s position can be obtained in real-
time. This method is an ego-localization method, with relatively
high robustness and precision. Furthermore, it is independent of
landmarks, and there is no need to build up a database beforehand.
Thedetail of themethodwas discussed as below.

4. Image matching

4.1 Comparison of themethods for local feature
detection
This research mostly resolves the matching of the local features
of pavement images, so it is very important to choose an

Figure 1 Smart car test platform

Figure 2 The overall flow chart of the algorithm
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appropriate method to ensure the number of feature points and
the efficiency of the algorithm. Different local features
extraction algorithms are suited to the images with different
features such as corners, blocks, spots and edges. The number
of the detected feature points and the operation time are two
key evaluation indicators for the local features extraction
algorithms. Moreover, the size of the image is also a critical
parameter, which directly determines the computation of an
algorithm. To select an appropriate local features extraction
algorithm and suitable image size, we conduct testing as
follows:
� The originally captured pavement images are transferred

into three different sizes, for example, 720 � 1,280 pixels,
360� 640 pixels and 180� 320 pixels shown in Figure 3;

� Four different corner detection algorithms (Harris, Susan,
SIFT and SURF) are used to detect as candidates for
detecting the feature points of the above images under the
same computing environment. CPU: dual-core Intel 2.50
GHz, memory: 8G and platform:MATLAB R2016a; and

� An efficiency function is defined as follows:

P ¼ ln Nð Þ
T

(1)

where N is the number of feature points, T is the processing
time of the corresponding algorithm and P is the number of
feature points matched in unit time.
The comparison results are shown in Table 1. Obviously,

when the size of the image is equal to 360� 640 pixels and the
SURF is chosen as the local features extraction algorithm, the
efficiency function P achieves the peak. So in this paper, we
transfer all the original captured pavement images into
360� 640 pixels and select SURF as the specified local feature
extraction algorithm.

4.2 Detection andmatching of the interesting points
using improved speeded up robust features
According to Table 1, this study uses an improved SURF
algorithm to detect the initial interesting points of pavement
images. To further speed up the efficiency of feature points
matching, this paper proposes a matching method based on the
prejudgment of the dominant direction and the simplified
distance formula. In addition, a simplified RANSAC algorithm
is used to remove the false correspondence pairs. Finally, the
robustmatched feature points are acquired.
SURF is a good algorithm for the extraction and description

of the local image features, which is primarily used in the field
of image registration and stitching. The SURF algorithm
includes three steps as follows:

1 the detection of the feature points;
2 the description of the feature points; and
3 the matching of the feature points.

The study in this paper optimized the SURF algorithm, a rapid
and accurate matching algorithm is proposed, which makes the
extraction of the vehicle trajectory more robust. Figure 4 shows
the flow chart of the improved SURF algorithm.

4.2.1 Detection of the feature points
Feature points detection includes three steps as follows: the
establishment of the integral image, the construction of the
multi-scale space for the specified image using a box-type filter
and the localization of feature points.
The rule judges whether a point (x, y) is a feature point or not

can be described as follows:
� For a given threshold, if the determinant of the Hessian

matrix of one pixel is greater than the threshold, it will
turn to Step 2, else turn to next pixel;

� The non-maximum suppression is applied for 3� 3� 3
three-dimensional neighborhood of the point, only the
point, which is greater than all 26 response values in
the three-dimensional neighborhood can be adopted as
the candidate feature point; and

� To get a stable position and scale value of a candidate
feature point, it needs to carry out interpolation operation
on different scale space.

4.2.2 Description of the feature points
The feature described can be divided into two steps as follows:
first, the dominant direction of the feature point is calculated to
ensure the rotation invariance of the algorithm; second, the
neighborhood of the feature points is rotated to the dominant
direction, and the descriptor of the feature point is gained.
After the dominant direction of the feature point is

determined, SURF uses wavelet responses in the horizontal
and vertical direction to describe a distinctive feature point. A
square region centered on the feature point and oriented along
with its dominant orientation. The size of this window is
20� 20 s, where s is the scale at which the feature point was
detected. This square region is divided into 4� 4 sub-regions
with size 5� 5 s. For each sub-region, a four-dimension feature
vector is established as follows:

v ¼ Rdx;Rdy;Rjdxj;Rjdyjð Þ (2)

In equation (2), dx denotes the Haar wavelet response in a
horizontal direction, and dy denotes the Haar wavelet response
in a vertical direction. SURF also extracts the sum of the
absolute values of the responses, |dx| and |dy| to enhance the
robustness of the distinctive feature vector. Then, the vectors of
16 sub-regions are forming a 64 (4� 16) dimension feature
vector. To ensure its brightness and scale invariance, the
descriptormust be normalized in advance.

4.2.3Matching of the feature points
In this paper, there are three steps for feature point matching.
First of all, fast index matching for preliminary screening of the
SURF algorithm continues to be used. Second, the absolute
distance is chosen to match the feature points and optimize the
result of fast index matching. Third, the angle difference of the

Figure 3 Three different sizes of a pavement image
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dominant direction is used to eliminate the false
correspondence pairs. Eventually, the final correct matched
feature points are obtained:
� Fast index matching

In the process of the feature points detecting, the Hessian
matrix trace is calculated. If the traces of two feature points
have the same signs, it means that these two feature points have
the same contrast. Otherwise, it indicates that they have
different contrast and there is no need to measure the similarity
between the two feature points, which can reduce the matching
time and computation cost.

� The similarity measurement for the matched feature
points based on the absolute distance

To describe the similarity of two feature points in two images,
respectively, the absolute distance is used to calculate as
follows:

L ¼
X64
k¼1

jlik � ljkj i ¼ 1;2; � � � ;N1 ; j ¼ 1;2; � � � ;N2

(3)

In equation (3), lik denotes the k-th element of the i-th SURF
feature point of the previous image. ljk denotes the kth elements
of the j-th SURF feature points of the current image. N1 is the
number of SURF feature points in a previous image and N2 is
the number in the current image.
For each feature point in the previous image, its absolute

distances to all feature points in the current image are
calculated, which constructs a distance set. From the distance
set, we can select the minimum distance and the second
minimum distance to compare with a threshold T. When the
second minimum distance is less than T, this feature point in
the previous image will be detained, as its corresponding
feature point is found in the current image. Otherwise, we will
discard this feature point. The smaller threshold is set, the less
correspondence pairs will be reserved, while the distinctiveness
and robustness of these pairs are higher. The proposed absolute
distance is useful to improve the efficiency of the algorithm and
also shortens the computation time with the comparison of the
Euclidean distance.
� Elimination of the false correspondence pairs based on the

angle difference

Taking into account image rotation, there is a certain angle
difference among dominant directions of the matched points.
F1 is a feature point in the previous image, which corresponds
to the dominant direction v1. F2 is a feature point in the
current image, which corresponds to the dominant direction
v2. The angle difference between the two dominant directions
is shown in equation (4):

Dw ¼ v1 � v2 (4)

Image rotation reflects on the rotation of the feature points’
dominant direction. If Dw is less than a threshold (T1), the

Table 1 Comparison of four kinds of algorithms

Image size 720� 1,280 360� 640 180� 320

Detection time of Harris (s) 12.547 3.095 0.811
Corner number of Harris (n) 2,917 581 62
P 0.636 2.056 5.089
Detection time of SUSAN (s) 32.684 8.334 2.167
Corner number of SUSAN (n) 4,485 2,270 437
P 0.257 0.927 2.806
Detection time of SIFT (s) 254.863 48.528 10.641
Corner number of SIFT (n) 53,590 10,349 2,270
P 0.043 0.191 0.7267
Detection time of SURF (s) 8.894 0.895 0.379
Corner number of SURF (n) 1,820 201 5
P 0.844 5.925 4.247

Figure 4 The flow chart of improved SURF algorithm
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feature points can be reserved, else they will be eliminated as
falsematched points.

4.2.4 Elimination of the false matched points using random sample
consensus
RANSAC algorithm is an iterative method to estimate
parameters of a mathematical model from a set of observed
data, which contains outliers. In this study, it is used to
eliminate the false matched points. Every time, eight groups of
points among all matched points are selected randomly to
calculate the fundamental matrix, which can determine
whether the rest of the points are inliers. The set with the
maximum amount of inliers is considered as the final matched
points set.

� The similarity distances of all correspondence pairs are
sort in descending order;

� N (N = TotalNum � t, TotalNum refers to the total
number of matching points and t is a proportional factor)
groups of correspondence pairs with bigger similarity
distances are selected as the initial sample space;

� The fundamental matrix is calculated using the eight
groups correspondence pairs randomly selected from the
initial sample space and then the inliers can be detected
according to the fundamental matrix; and

� Step 3 is repeated until the trial times come to the setting
number. Finally, the points set having the maximum
amount of inliers is considered as the one containing all
the correct correspondence pairs.

In this study, the initial sample space is confined in the
correspondence pairs, which have bigger similarity distances.
So the fundamental matrix computed from this sample space
would have higher compactness. As the sample space is
narrowed, the computation time of the proposed RANSAC
algorithm is reduced. On the other hand, it also decreases the
total number of the final matched pairs. Considering the
computation time and the total number of the remained
correspondence pairs, in this study, the proportional factor t is
set to 0.5-0.6 after experimental testing. The feature point

Figure 5 RANSAC to eliminate mismatched points

Figure 6 (a) The n-th image; (b) the (n1 1)-th image; (c) the (n1 1)-th image is rotated with an angle of Du ; and (d) the feature points in (n1 1)-th
image overlap with the ones in the nth image by rotation and translation
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matching diagram before and after using the RANSAC
algorithm is shown in Figure 5.

5. Extraction of vehicle trajectory

Figures 6(a) and 6(b) are two consecutive images captured at
time Tn and Tn 1 1, respectively. After completing the matching
of the feature points in both images, the offset of vehicle
movement during the sampling interval can be calculated
through the coordinate transformation of the corresponding
pairs. The feature points P0, P1, P2, P3, . . ., Pk – 1 in the n-th
image In and P

0
0;P

0
1;P

0
2;P

0
3; . . . ;P

0
k�1 in the (n1 1)-th image In 1 1

represent the matched points set on the pavement in image
coordinate system.When the vehicle moves, if the camera pose
relative to the vehicle remains the same, the rigid
transformation between the matched feature points in In and
In 1 1 can be described by equation (5):

x
y
1

2
4
3
5 ¼

cosu �sinu M � Dx
sinu cosu M � Dy
0 0 1

2
4

3
5 x0

y0

1

2
4

3
5 (5)

In this formula, (x0, y0) and (x, y) denote the coordinates of the
feature points in In11 and In, respectively; Du denotes the
rotation angle of the vehicle movement; Dx and Dy denote
the horizontal and vertical offsets of the vehicle movement in
the image coordinate system; M represents the scaling
coefficient from the world coordinate to image coordinate. If
In11 is rotated around its center O0 with an angle of Du in
counter-clockwise direction, and translated with an increment
of Dx in horizontal and Dy vertical direction, these two images
will completely overlap.
However, when the vehicle is moving in real-world

coordination, the camera pose will constantly change due to
vehicle vibration. Hence, the relationship between In and In 1 1

becomes a projective transform instead of a strict rigid
transformation, and the solution of equation (5) will be not a
standard form shown in equation (6), which only includes the
parameters regarding the rotation and translation. On the

contrary, it is a matrix form shown in equation (7), from which
the rotation andmovement offsets cannot be obtained directly:

Hr ¼
cosu �sinu Dx

sinu cosu Dy

0 0 1

2
64

3
75 (6)

Hp ¼
h11 h12 h13
h21 h22 h23
h31 h32 h33

2
64

3
75 (7)

In this paper, an approximate method is proposed to estimate
the offset of vehicle movement. The key idea is to produce two
arbitrary polygons with the same shape by connecting all the
feature points in In and In 1 1 ordered by the index. In
Figure 6(c), after a rotation of Du and a translation of (Dx, Dy),
the polygonP

0
0P

0
1P

0
2P

0
3 . . .P

0
k�1 in In11 will approximately

overlap with the polygon P0, P1, P2, P3, . . ., Pk�1 in Figure 6(d).
The rotation angle Du can be estimated through equation (8)
by averaging the included angles between the corresponding
edges on the two polygons:

Dû ¼ 1
k

Xk�1

i¼0

arctan
P

0
i1 1 xð Þ � Pi1 1 xð Þ

P 0
i1 1 yð Þ � Pi1 1 yð Þ � arctan

P
0
i xð Þ � Pi xð Þ

P 0
i yð Þ � Pi yð Þ

 !

(8)

In addition, Dx and Dy can be estimated by the translation of
the gravity centers of the two polygons as shown in equation (9):

Dx̂ ¼ 1
k

Xk�1

i¼0

xi � x0 0i
� �

Dŷ ¼ 1
k

Xk�1

i¼0

yi � y0 0i
� � (9)

As the offsets Dx and Dy are relative to coordinates XOY of the
(n1 1)-th image, therefore, according to the rotated angle of two

Figure 7 Simulation trajectory
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images, offsets Dx0 and Dy0 can be calculated in the coordinate
XOY of the n-th image, as defined by equation (10). If u is the
sum of the image rotated angles from the first image to the
(n1 1)-th, Dx0 and Dy0 denote the offsets in the coordinate
system of the first image. The average offsets of the (n1 1)-th
image can be calculated based on all the final feature points:

Dx0 ¼ Dxcosu � Dysinu
Dy0 ¼ Dxsinu 1Dycosu

�
(10)

In this study, the GPS coordinate of the first image is taken as
the initial position of the vehicle, and the above-average
deviation is used to calculate the position corresponding to
other images. The vehicle track can be plotted by connecting all
the positions. Therefore, a track is drawn on an asphalt
pavement as shown in Figure 7(a), and a track is obtained by
using the above steps as shown in Figure 7(b). It can be seen
that the two tracks basically coincide, thus verifying the
feasibility of this algorithm.

6. Experimental results and analysis

To verify the correctness of the algorithm, we conducted a field
experiment on the campus of Chang’an University, using the
car shown in Figure 1 for data acquisition. In addition to the
camera shown in the figure, the car was installed a DGPS
system, and the DGPS system has a positioning accuracy of 2
m. Two experiments were carried out on the campus of
Chang’anUniversity. The first group of experiments is the road
adaptability test; the second group is the open environment
short-distance test of differentmaneuvering behaviors.

6.1 Road adaptability experiment
This topic selects three kinds of pavement images to test road
adaptability. The three pavements are:
1 paving pavement;
2 asphalt pavement; and
3 cement pavement.

For each type of pavement, we collected 7,500 images for
feature point acquisition and matching experiments. Figure 8
shows the SURF algorithm matching results for the three road
surfaces. It can be seen from the results in the figure that for the
image with a rich texture of the road surface, the SURF
operator can get more matching feature points pairs because
the surf operator is a multi-scale space feature point detection
algorithm. Image spots at different scales are detected.

6.2 Short-distance experiment
In our open environment, three different maneuvering
trajectories were tested. The current vehicle speed is 30km/h.
The three maneuvers are straight, right and meandering. In this
experiment, the DGPS positioning data is used as a reference. It

Figure 8 Surf algorithmmatching results for three road surfaces

Figure 9 Short-distance experiment
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can be seen from Figure 9 that the image positioning trajectory is
smoother and the GPS data has a certain jitter. The detection
accuracy is shown in the table. In the short distance case, the
image positioning achieves the accuracy of the lane level.
Figure 10(a) shows the correction results of two consecutive

images. Figure 10(b) shows the matched pairs between the two
images, which are used to calculate the offsets and rotation angle
between the two images. Table 2 shows the x-axis and y-axis
offsets of 36 pairs ofmatching points, which are in Figure 10.
The average translation of all matched points is used as image

offsets Dx and Dy. In addition, each pair of matching points is
applied to calculate the rotated angle (Table 2) and the average of
all the rotated angles is as the image rotated angle Du . It may
cause an error angle due to the error matching points, so the
calculation results are amended by using the threshold of 0.05.
The actual coordinates of the initial position are (a, b) and the
logical coordinates are (0, 0). According to equation (8), the
image’s offsets are calculated in the initial coordinates.

To test the accuracy of the trajectory, which is got by the
algorithm in this study, three trajectories are compared to the
data from GPS. The results are as shown in Figure 9. The
analysis is shown in Table 3. It is easy to know that the vehicle
trajectory accuracy of this experiment is better than that ofGPS.

7. Conclusions

This study presents a precise vehicle ego-localization using
local feature matching of pavement images, which captures
pavement images by a reversing camera installed at the rear of a
car. Through the matching of the two consecutive pavement
images, the relative position of vehicle motion is obtained. This
research can draw the following conclusions:
� The proposed method with low complexity and good real-

time performance has an advantage that there is no need
to establish a global database prior to use;

� After the comparison experiment, the pavement image
feature extraction algorithm is suggested in this paper.
Adopting the SURF for feature extraction, which can
extract much more feature point with short processing
time, it is very suitable for the pavement images;

� Experiment results show that the positioning accuracy of
the new algorithm is less than 0.5 m, and it can satisfy the
intelligent transportation application in the lane level;

� The studied algorithm is tested under daylight conditions,
but for the night time conditions, the supplemental
lighting equipment is also needed to enhance the overall
image brightness; and

� The proposed algorithm may lead to undesired deviation in
generating vehicle trajectory due to cumulative errors after a
long run, so combining the GPS, the INS and other

Figure 10 (a) The preprocessing results for 42-th and 43-th frame
images; and (b) the matching results based on the improved SURF
algorithm

Table 3 Comparison of vehicle location methods

Method GPS Proposed algorithm

Accuracy <5 m <0.5 m
Applications Good signal area Any region

Table 2 The offsets of all matched pairs between two images

Offset
pairs # Dx Dy Du

Corrected
Du Dx Dy Du

Corrected
Du

1 �15.8614 �0.5742 / / 47 �14.4780 0.6135 0.0250 0.0250
2 �16.7136 �0.8217 �0.0114 �0.0114 48 �15.6444 0.0621 0.0059 0.0059
3 �15.1938 0.7478 �0.0141 �0.0141 49 �16.8024 �0.5776 �0.0001 �0.0001
4 �15.5259 0.4458 0.0050 0.0050 50 �15.9476 0.5238 �0.0083 �0.0083
5 �15.7812 0.1316 �0.0045 �0.0045 51 �16.5887 �1.2866 �0.0042 �0.0042
6 �14.6177 0.9814 0.1881 0 52 �15.6603 �1.2565 0.0045 0.0045
7 �16.1832 �0.3471 �0.0313 �0.0313 53 �15.8638 0.4115 0.0036 0.0036
8 �16.1900 �0.5672 �0.0158 �0.0158 54 �15.5162 0.5364 �0.0017 �0.0017
9 �15.7571 0.1096 �0.0097 �0.0097 55 �15.0374 0.4458 0.0022 0.0022
10 �14.0797 0.3885 �0.0564 �0.0564 56 �15.3338 0.0119 0.0026 0.0026
11 �17.0772 �1.6135 �0.0425 �0.0425 57 �14.5871 0.7177 0.0153 0.0153
12 �16.3072 �0.0515 �0.0237 �0.0237 58 �15.9907 �0.1268 0.0082 0.0082
13 �16.2235 0.6755 �0.0049 �0.0049 59 �13.8391 �0.3000 0.0073 0.0073
14 �15.0399 0.1378 3.1313 0 60 �15.7289 0.9493 �3.1131 0
15 �14.9716 1.1864 �0.0002 �0.0002 61 �15.8805 0.2761 �0.0005 �0.0005
16-46 . . . . . . . . . . . . Average �15.6066 0.0851 / �0.0038
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positioning sensors together with the research is required to
ensure the positioning with the long-term stability and
reliability.
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