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Abstract

Purpose –The cardiomegaly can be determined by the cardiothoracic ratio (CTR) which can be measured in a
chest x-ray image. It is calculated based on a relationship between a size of heart and a transverse dimension of
chest. The cardiomegaly is identified when the ratio is larger than a cut-off threshold. This paper aims to
propose a solution to calculate the ratio for classifying the cardiomegaly in chest x-ray images.
Design/methodology/approach – The proposed method begins with constructing lung and heart
segmentationmodels based onU-Net architecture using the publicly available datasetswith the groundtruth of
heart and lung masks. The ratio is then calculated using the sizes of segmented lung and heart areas. In
addition, Progressive Growing of GANs (PGAN) is adopted here for constructing the new dataset containing
chest x-ray images of three classes including male normal, female normal and cardiomegaly classes. This
dataset is then used for evaluating the proposed solution. Also, the proposed solution is used to evaluate the
quality of chest x-ray images generated from PGAN.
Findings – In the experiments, the trained models are applied to segment regions of heart and lung in chest
x-ray images on the self-collected dataset. The calculated CTR values are compared with the values that are
manually measured by human experts. The average error is 3.08%. Then, the models are also applied to
segment regions of heart and lung for the CTR calculation, on the dataset computed by PGAN. Then, the
cardiomegaly is determined using various attempts of different cut-off threshold values. With the standard
cut-off at 0.50, the proposed method achieves 94.61% accuracy, 88.31% sensitivity and 94.20% specificity.
Originality/value – The proposed solution is demonstrated to be robust across unseen datasets for the
segmentation, CTR calculation and cardiomegaly classification, including the dataset generated from PGAN.
The cut-off value can be adjusted to be lower than 0.50 for increasing the sensitivity. For example, the

Automatic
measurement

of CTR

© Worapan Kusakunniran, Pairash Saiviroonporn, Thanongchai Siriapisith, Trongtum Tongdee,
Amphai Uraiverotchanakorn, Suphawan Leesakul, Penpitcha Thongnarintr, Apichaya Kuama and
Pakorn Yodprom. Published in Applied Computing and Informatics. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial and
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2634-1964.htm

Received 8 November 2022
Revised 24 January 2023

16 March 2023
Accepted 24 March 2023

Applied Computing and
Informatics

Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964

DOI 10.1108/ACI-11-2022-0322

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-11-2022-0322


sensitivity of 97.04% can be achieved at the cut-off of 0.45. However, the specificity is decreased from 94.20%
to 79.78%.

Keywords Cardiothoracic Ratio, CTR, Cardiomegaly, Chest x-ray, GANs

Paper type Full length article

1. Introduction
Cardiomegaly is a sign of medical conditions such that the heart is enlarged [1]. It could be
diagnosed using chest x-ray images. It could lead to a stroke or heart attack [2]. The
cardiomegaly is determined using a value of the cardiothoracic ratio (CTR) with a cut-off
value of 0.5 [3]. It is calculated based on an aspect ratio between the heart’s size and the chest’s
transverse dimension.

Therefore, to calculate CTR, it is necessary to segment the heart and lungs in a chest x-ray
image. Based on our literature reviews, the heart segmentation model was based on
convolutional neural networks. Rdzhabov and Kovalev [4] adopted the regular U-Net
architecture for the segmentation. While, by Maga [5], the modification of attention U-Net was
adopted, named attention BCDU-Net (Bi-directional ConvLSTMU-Net with Densely connected
convolutions), where the attention gate was added. Similarly, for the lung segmentation,
trainingU-Net on the Japanese Society of Radiological Technology (JRST) dataset was reported
to be state-of-the-art for the segmentation [6–8]. In addition, generative adversarial networks
(GAN) were recently applied to train for generating segmentedmasks of chest x-ray images [9].
The generator part was trained to compute a segmented area of lung, where the discriminator
partwas used to distinguish the segmented lung and the corresponding groundtruth. However,
the performance could not outperform the U-Net based solutions.

Then, the next step is to perform the CTR calculation for identifying the cardiomegaly.
Most existingworks calculated CTRvalues based on segmented heart and lung regions using
the segmentation models [10–14]. Interestingly, a study has attempted four different
customized-encoders including: Visual Geometry Group (VGG)-11 U-Net, VGG-16 U-Net,
SegNet and AlbuNet [10]. AlbuNet was seen to provide the most consistent and smooth
segmentation results. The postprocessing step was applied to the segmented results before
calculating CTR [11], based on the dilation and erosion processes. Then, the connected
components of prediction masks were set to be the segmented lungs and heart.

Differently, by Singh et al. [15], cardiomegaly was identified using critical points, which
were obtained using the Convolutional Neural Network (CNN)-based regressor. The deep
reinforcement learningwas then applied to the points to generate the regression points for the
CTR measurement.

Recently, Ajmera et al. also deployed U-Net for segmenting areas of lungs and heart [16].
The CTRwas calculated using widths of chest and heart. The CTR cut-off of 0.55 was used to
determine the cardiomegaly. In addition, Lee et al. used U-Net for lung and heart
segmentation [17]. The segmentation performance was varied depending on thoracic
conditions. The automatic CTR calculation was then performed based on the segmentation
results, which was used as an index of cardiac enlargement. The cardiomegaly was cut-off at
the CTR of 0.50, for a regular diagnostic practice.

In this paper, the developed solution relies on the U-Net based model for heart and lung
segmentation. The trained models and CTR calculation method will also be validated on the
cross-dataset schema. The methods are trained on publicly available datasets and tested on
the self-collected dataset. Also, a large-sized dataset of 30,000 x-ray images is constructed
using progressive growing of GAN (ProGAN) [18]. This step is used for validating the
classification of cardiomegaly. In addition, more examples of GAN [19–21] could be choices of
the step of using GAN to generate more data samples. In this paper, as an example, it is
sufficient to deploy the U-net as the main segmentation technique and ProGAN as the main
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image synthesis technique of constructing chest x-ray images for both cases of cardiomegaly
and normal.

The proposed solution is then evaluated in several perspectives including heart and lung
segmentation, CTR calculation and cardiomegaly classification. The experiments are also
conducted on publicly available dataset, self-collected dataset, and ProGAN-reconstructed
dataset. The rest of this paper is organized as follow. The methodology is proposed in
section 2. The experiments and results are explained in section 3. Then, the conclusion is
drawn in section 4.

2. Proposed method
The proposed solution of CTR measurement in this paper contains three main steps: (1) lung
segmentation, (2) heart segmentation and (3) ratio calculation. Then, it is evaluated based on
three datasets of publicly available datasets, a self-collected dataset and created x-ray images
of chest Postero-Anterior (PA) using the GAN technique. The results are explained and
discussed in the next section. In addition, some related supplementarymaterials of additional
figures are located at https://github.com/worapanda/ACI_CTR.

To calculate CTR, as shown in Figure 1, it is a ratio between the widest area of the heart
(i.e. orange line) and the widest area of the thoracic cavity (i.e. blue line) in the chest PA x-ray
image [22]. Therefore, estimating CTR must begin with segmenting areas of the heart and
lungs. Then, lengths of the widest area of the heart and the widest area of the thoracic cavity,
based on segmented areas of the heart and lungs, are measured for calculating CTR.

Three types of inputs are needed to train and evaluate the performance of the
segmentation, including chest PA x-ray images, lungmasks and heart masks. The masks are
used in the training process to allocate the corresponding areas in the x-ray images for seen
lung and heart characteristics. At the same time, they are used in the testing process to see
how accurate the segmented results by the proposed method are. The efficiency of the
segmentation will directly influence the efficiency of the CTR calculation.

The lung and heart segmentation are implemented based on U-Net architecture [23–25]. It
is one popular type of convolutional neural network that was first developed for biomedical
image segmentation. The architecture contains two main modules, including encoder and
decoder modules. The encoder module (i.e. the left side of the U shape of U-Net) or the
contraction part contains two 3 3 3 convolution layers, a rectified linear unit (ReLu) and
down-samplingwith a 23 2max-pooling for capturing principal contexts in input images. At
each down-sampling step, the number of feature spaces is double. For example, the first layer
of the encoder module begins with the feature space starting from 32 filters. It is then doubled
to 64, 128, 256 and 512 filters in layers 2, 3, 4 and 5, respectively.

Figure 1.
Sample visualizations
of CTR measurements,
where an orange line
represents a widest

area of heart, a blue line
represents a widest

area of thoracic cavity,
and CTR is a ratio

between a length of the
orange line and a

length of the blue line
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In the proposed U-Net based-architecture, at each layer of the decoder modules, features are
computed by concatenating features from three parts including (1) the encoder module of the
same layer, (2) the decoder module from the below layer, (3) the encoder module of the
below layer.

In addition, the decodermodule (i.e. the right side of theU shape ofU-Net) or the expansivepart
contains up-sampling of the feature space, which uses a 23 2 convolution and a concatenation
with the corresponding cropped feature space from the contraction part. Then, it uses a 33 3
convolution layer, each followed by ReLu. At the final layer, it uses a 13 1 convolution layer to
generate the final segmentation result. The sample output is shown in Figure 2.

The next step is to automatically allocate bounding rectangles fitting contours of
segmented lungs and heart [26, 27], as shown in Figure 3. Then, thewidest area of the thoracic
cavity (L) is measured by subtracting the rightmost position of the right lung from the
leftmost position of the left lung. While the widest area of the heart (H) is computed by
measuring the size of the fitted bounding rectangle. Finally, CTR is a ratio of H

L
. If CTR is

larger than a preset threshold, it would be classified as cardiomegaly. The threshold is
usually set to 0.5 [28, 29].

Another main point of this paper is to research using GAN [18, 30, 31] for generating more
testing data samples with predicted groundtruth labels. In another way around, this paper
also presents a way to evaluate outputs from GAN based on the proposed CTR calculation
method, which will be first evaluated with the datasets with the actual groundtruth labels. In
this paper, the progressive growing of GAN (ProGAN) is adopted in our implementation [18].
ProGAN proposed a new training strategy for GAN to generate images of unprecedented
quality in a large size. The training process began with a low resolution (e.g. 43 4 pixels) and
then progressively grew both the generator and discriminator modules of the network. This
could increase fine details and compute a large-sized (e.g. 1024 3 1024 pixels) image as an
output.

Figure 2.
Sample outputs of
lung and heart
segmentation

Figure 3.
Sample bounding
rectangles fitting
segmented contours of
lungs and heart

ACI



3. Experiments and discussions
Our experiments are divided into three main parts, as below.

(1) Experiment 1: This experiment has three objectives, including (1) constructing
models of lung and heart segmentation, (2) evaluating performances of the
segmentation and (3) evaluating performances of the CTR calculation. The
experiment is performed on publicly available datasets with the groundtruth
masks of lungs and hearts in chest PA x-ray images. The segmentation models
developed in this experiment will be used to segment lungs and hearts in experiments
2 and 3. This is because datasets used in experiments 2 and 3 do not contain the
groundtruth masks of lungs and hearts. So, the segmentation models could not be
created in experiments 2 and 3.

(2) Experiment 2: This experiment aims to evaluate the CTR calculation on a more
extensive and unseen dataset, a self-collected dataset, based on the trained
segmentation models from experiment 1. This schema could validate cross-
datasets performances, where the models are trained on one dataset and tested on
another. The self-collected dataset comes with the groundtruth labels of CTR
manually measured by three human experts.

(3) Experiment 3: This experiment is performed on the constructed chest PA x-ray
images using ProGAN. ProGAN is trained to create 10,000 chest PA x-ray images in
three classes: (1) male normal, (2) female normal and (3) cardiomegaly. The
segmentation models trained in experiment 1 are then used to segment lungs and
hearts in all images before calculating CTR accordingly. The cut-off threshold on
CTR of cardiomegaly is varied to see the detailed performance.

3.1 Experiment 1
Two publicly available datasets are used in this experiment. The first dataset is used for lung
segmentation [32, 33]. It contains 704 chest x-ray images with corresponding lung mask
images. The resolution of each image is 512 3 512 pixels. The second dataset, Japanese
Society of Radiological Technology (JSRT) [34], consists of three sets, including 247 chest x-
ray images, 247 lung mask images and 247 heart mask images [35]. Each chest x-ray image
has a size of 2,048 3 2,048 pixels. However, both lung-mask and heart-mask images have
resolutions of 512 3 512 pixels. This second dataset is used for both lung and heart
segmentation. Each dataset is split into training, validating and testing sets in a ratio of
0.6:0.2:0.2, respectively. The training and validating sets are used for constructing the
segmentation models. Then, the testing set is used for evaluating the CTR calculation.

Using the first dataset alone, the training and validating results (i.e. pixel-based accuracy)
of the lung segmentation are 0.97 and 0.96, respectively. The Dice scores are 0.97 and 0.96 for
the training and validating sets, respectively. In addition, by combining the two datasets, the
lung segmentation performance is improved. The training and validating results are both
0.98, also with the Dice scores of 0.98. In addition, using the second dataset alone, the trained
model of heart segmentation is developed and achieves accuracies of 0.99 and 0.98 on the
training and validating sets, respectively. While, the dice scores are 0.98 and 0.96 for the
training and validating sets, respectively.

Figure 4 shows rectangle fitting examples on segmented lungs and hearts of the two cases.
A widest area of thoracic cavity (L) is calculated by subtracting the rightmost position of the
rectangle covering the right lung from the leftmost position of the rectangle covering the left
lung. Also, a widest area of heart (H) is measured as the width of the rectangle covering the
heart. The next step of the evaluation is to validate the performance of the CTR calculation.
However, there is no available groundtruth of CTR from these two datasets. Therefore, the
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CTR values are manually measured using the lung and heart mask images to create the CTR
groundtruth. The performances are measured in percentage errors, as shown in Table 1. The
error of CTR calculation is only 2.94%. However, themajority of the error came from the heart
segmentation results, about 2.27%. As shown in Figure 4, heart segmentation is more
complicated than lung segmentation since the heart area is located behind the thoracic
vertebrae and has similar characteristics to surrounding traces of disease, such as alveolar
opacity, including ground glass opacity and consolidation.

3.2 Experiment 2
This experiment is performed on the self-collected dataset containing 7,523 chest x-ray
images. Each image is saved in a resolution of 5123 512 pixels. Then, three human experts
were asked to manually label each image’s CTR. Since this dataset does not contain
groundtruth of lung and heart mask images, the segmentation models are adopted from
Experiment 1. This could be an opportunity to validate the models on cross-datasets, where
the models are trained by the datasets in experiment 1 and used for segmenting unseen data
of our self-collected dataset. The percentage errors of the CTR calculation compared with the
manual measurements of the three experts are demonstrated in Table 2.

The errors are reported as 3.73%, 3.29% and 3.15% when compared with the manual
measurements from each expert, respectively. In addition, the calculated CTR values are

A widest area of thoracic cavity A widest area of heart CTR

Percentage error (%) 0.99 2.27 2.94

Source(s): Authors own work

Expert 1 Expert 2 Expert 3

Percentage error (%) 3.73 3.29 3.15

Source(s): Authors own work

Figure 4.
Rectangle fitting
examples on
segmented lungs and
hearts

Table 1.
Performances of CTR
calculation on JSRT
dataset

Table 2.
Performances of CTR
calculation on the self-
collected dataset
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compared with the averages of 3 CTR values by the three experts. For each case, the 3 CTR
values are averaged before being compared with the one computed by the proposed method.
The error is reported as 3.08%, slightly higher than the error reported in experiment 1, where
the test and train sets are from the same dataset. These results could demonstrate the validity
of the segmentation models across the datasets.

In addition, as one way of practical usages, the proposed solution of the automatic CTR
calculation could be provided as an initial guideline for a diagnosis of cardiomegaly. Also,
measurements of a widest area of thoracic cavity and awidest area of heart could be provided
along in an interactive tool, which could be edited further by users. The roughly acceptable
error, in which a corresponding case would not need any additional manual-edit step, is
1.80%. In our experiment, there is 44.27% of a total number of cases that has an error of CTR
calculation below 1.80%.

3.3 Experiment 3
In this experiment, the dataset of 30,000 chest PA x-ray images is constructed using ProGAN.
It contains 10,000 images in each of the three classes: male normal, female normal and
cardiomegaly. It yields the Frechet inception distance (FID) [36] values of 15.75, 15.23, and
16.71 for male normal, female normal and cardiomegaly classes respectively. This dataset
contains no groundtruth of lung and heart masks. However, it has labels of being
cardiomegaly or noncardiomegaly classes. Sample images of the three classes generated by
ProGAN are shown in https://github.com/worapanda/ACI_CTR.

In addition, these images are segmented using the trained lung and heart segmentation
models computed in experiment 1. Then, CTR values are calculated accordingly. The values
are compared with a threshold T. If the value is larger than T, it is classified as the
cardiomegaly class. Otherwise, it is classified as the normal class. The T value varies from
0.45 to 0.55 (with a step difference of 0.01) to demonstrate the classification accuracy at the
different threshold values, as shown in Table 3.

Table 3 shows that if we cut off the cardiomegaly at the T 5 0.50, the sensitivity and
specificity are reported as 88.31% and 94.20%, respectively. However, to obtain the higher
sensitivity of 97.04%, the threshold T must be set smaller to be 0.45. However, the specificity
is also reduced to 79.78%, accordingly.

In the performance comparison, it is considered from two perspectives. The first
perspective is to compare the performance of the CTR measurement. The methods by Singh
et al. [15] and Dallal et al. [12] reported errors of 5.4% and 7.9%, respectively, while the

Threshold
Classification accuracy (%)

Sensitivity (%) Specificity (%)Male normal Female normal Cardiomegaly

0.45 51.07 39.43 99.20 97.04 79.78
0.46 62.05 49.18 98.91 96.14 83.61
0.47 72.57 58.23 98.58 94.79 86.79
0.48 80.98 66.81 97.84 92.81 89.81
0.49 87.83 74.82 96.65 90.09 92.66
0.50 93.09 81.86 94.61 88.31 94.20
0.51 94.67 84.89 92.89 83.81 96.04
0.52 96.57 89.57 89.44 78.94 97.16
0.53 97.60 93.01 85.49 74.02 97.88
0.54 98.35 95.15 81.03 69.03 98.08
0.55 98.73 96.68 75.23 64.44 98.26

Source(s): Authors own work

Table 3.
Performances of CTR

calculation on the
dataset constructed by

ProGAN
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proposed method had a lower error of 2.94%. The second perspective is to demonstrate the
performance of the cardiomegaly classification. The method proposed by Chamveha et al. [11]
reported the performance on the dataset containing 491 x-ray images of the cardiomegaly class
and 531 x-ray images of the noncardiomegaly class. They reported the accuracy, sensitivity,
and specificity values as 67%, 81%, and 69%, respectively. Compared to our results, we
reported the performance on the dataset of 30,000 x-ray images with accuracy, sensitivity and
specificity of 94.61%, 88.31% and 94.20%, respectively (i.e. using the cut-off as 0.50).

Moreover, the method by Gupte et al. [13] reported sensitivity and specificity of 96% and
81%, respectively.While ourmethod achieves a comparable performance of 96.14%and83.61%
(i.e. using the cut-off as 0.46) of sensitivity and specificity, respectively. However, if a higher
sensitivity of 97.04% is preferred, the cut-off can be set as 0.45. On the other hand, if a higher
specificity is preferred, the cut-off can be adjusted to be higher than 0.50, as shown in Table 3.

To further validate the performance of the proposedmethod, the 10-fold cross validation is
performed, using the cut-off value of 0.50. The sensitivity and specification of each fold are
reported in Table 4. The averages and standard deviations are also stated in the final row of
the table. The proposed solution is shown to be stable with the standard deviations of both
sensitivity and specificity less than 2%.

4. Conclusion
This paper developed a solution containing three steps on lung and heart segmentation, CTR
calculation and cardiomegaly classification. The segmentation models were trained and
validated on the publicly available datasets with the mask groundtruth, based on U-Net
architecture. The models were then used for segmenting areas of the lungs and heart in chest
x-ray images on unseen datasets, including the self-collected dataset and the new dataset
generated by ProGAN. The segmented areas were used to compute CTR values which were
then used to identify the cardiomegaly by comparingwith the cut-off threshold. It reported an
average error of 3.08% for the CTR calculation on the self-collected dataset. Also, it reported
the accuracy of 94.61%, the sensitivity of 88.31%, and the specificity of 94.20% for
cardiomegaly classification on the dataset constructed by ProGAN.

In addition, for a future work, the developed program of CTR calculation could be
validated in a real-world scenario. However, an iterative program of using the CTR
calculation should be built up. It would be needed when the segmented lungs and heart are
not accurate. Users could edit inaccurate parts as necessary before calculating the CTR of
each case. Also, regarding the generated images by ProGAN, they could be used in the
training step to enhance the segmentation performance. However, the additional step ofmask
labeling for the segmentation groundtruth is needed.

Fold Sensitivity (%) Specificity (%)

1 89.21 93.56
2 90.21 91.53
3 88.65 94.12
4 86.21 95.76
5 87.89 95.13
6 91.12 90.63
7 88.21 94.47
8 88.31 94.20
9 89.75 93.98
10 87.21 95.27
Average, Standard deviation 88.68, 1.38 93.87, 1.54

Source(s): Authors own work

Table 4.
Ten-fold cross-
validation
performances of CTR
calculation on the
dataset constructed by
ProGAN
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