Search results

1 – 10 of 51
Content available
Book part
Publication date: 18 April 2018

Abstract

Details

Safe Mobility: Challenges, Methodology and Solutions
Type: Book
ISBN: 978-1-78635-223-1

Open Access
Article
Publication date: 6 September 2019

Mohamed M. Ahmed, Guangchuan Yang, Sherif Gaweesh, Rhonda Young and Fred Kitchener

This paper aims to present a summary of the performance measurement and evaluation plan of the Wyoming connected vehicle (CV) Pilot Deployment Program (WYDOT Pilot).

1580

Abstract

Purpose

This paper aims to present a summary of the performance measurement and evaluation plan of the Wyoming connected vehicle (CV) Pilot Deployment Program (WYDOT Pilot).

Design/methodology/approach

This paper identified 21 specific performance measures as well as approaches to measure the benefits of the WYDOT Pilot. An overview of the expected challenges that might introduce confounding factors to the evaluation effort was outlined in the performance management plan to guide the collection of system performance data.

Findings

This paper presented the data collection approaches and analytical methods that have been established for the real-life deployment of the WYDOT CV applications. Five methodologies for assessing 21 specific performance measures contained within eight performance categories for the operational and safety-related aspects. Analyses were conducted on data collected during the baseline period, and pre-deployment conditions were established for 1 performance measures. Additionally, microsimulation modeling was recommended to aid in evaluating the mobility and safety benefits of the WYDOT CV system, particularly when evaluating system performance under various CV penetration rates and/or CV strategies.

Practical implications

The proposed performance evaluation framework can guide other researchers and practitioners identifying the best performance measures and evaluation methodologies when conducting similar research activities.

Originality/value

To the best of the authors’ knowledge, this is the first research that develops performance measures and evaluation plan for low-volume rural freeway CV system under adverse weather conditions. This paper raised some early insights into how CV technology might achieve the goal of improving safety and mobility and has the potential to guide similar research activities conducted by other agencies.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 24 December 2021

Lishengsa Yue, Mohamed Abdel-Aty and Zijin Wang

This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of human-driven vehicles on the mainline.

Abstract

Purpose

This study aims to evaluate the influence of connected and autonomous vehicle (CAV) merging algorithms on the driver behavior of human-driven vehicles on the mainline.

Design/methodology/approach

Previous studies designed their merging algorithms mostly based on either the simulation or the restricted field testing, which lacks consideration of realistic driving behaviors in the merging scenario. This study developed a multi-driver simulator system to embed realistic driving behavior in the validation of merging algorithms.

Findings

Four types of CAV merging algorithms were evaluated regarding their influences on driving safety and driving comfort of the mainline vehicle platoon. The results revealed significant variation of the algorithm influences. Specifically, the results show that the reference-trajectory-based merging algorithm may outperform the social-psychology-based merging algorithm which only considers the ramp vehicles.

Originality/value

To the best of the authors’ knowledge, this is the first time to evaluate a CAV control algorithm considering realistic driver interactions rather than by the simulation. To achieve the research purpose, a novel multi-driver driving simulator was developed, which enables multi-drivers to simultaneously interact with each other during a virtual driving test. The results are expected to have practical implications for further improvement of the CAV merging algorithm.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 13 September 2022

Haitao Ding, Wei Li, Nan Xu and Jianwei Zhang

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected…

Abstract

Purpose

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected environment.

Design/methodology/approach

In this paper, an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed for connected EVs. The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving. Moreover, this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.

Findings

To illustrate the performance for the EEDC-HRL, the controlled EV was trained and tested in various traffic flow states. The experimental results demonstrate that the proposed technique can effectively improve energy efficiency, without sacrificing travel efficiency, comfort, safety and lane-changing performance in different traffic flow states.

Originality/value

In light of the aforementioned discussion, the contributions of this paper are two-fold. An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs. A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 18 August 2020

Qing Xu, Jiangfeng Wang, Botong Wang and Xuedong Yan

This study aims to propose a speed guidance model of the CV environment to alleviate traffic congestion at intersections and improve traffic efficiency. By introducing the theory…

Abstract

Purpose

This study aims to propose a speed guidance model of the CV environment to alleviate traffic congestion at intersections and improve traffic efficiency. By introducing the theory of moving block section for high-speed train control, a speed guidance model based on the quasi-moving block speed guidance (QMBSG) is proposed to direct platoon including human-driven vehicles and connected vehicles (CV) through the intersection coordinately.

Design/methodology/approach

In this model, the green time of the intersection is divided into multiple block intervals according to the minimal safety headway. Connected vehicles can pass through the intersection by following the block interval using the QMBSG model. The block interval is assigned dynamically according to the traveling relation of HV and CV, when entering the communication range of the intersection. To validate the comprehensive guidance effect of the proposed model, a general evaluation function (GEF) is established. Compared to CVs without speed guidance, the simulation results show that the GEF of QMBSG model has an obvious improvement.

Findings

Compared to CVs without speed guidance, the simulation results show that the GEF of QMBSG model has an obvious improvement. Also, compared to the single intersection speed guidance model, the GEF value of the QMBSG model improves over 17.1%. To further explore the guidance effect, the impact of sensitivity factors of the CVs’ environment, such as intersection environment, communication range and penetration rate (PR) is analyzed. When the PR reaches 75.0%, the GEF value will change suddenly and the model guidance effect will be significantly improved. This paper also analyzes the impact of the length of block interval under different PR and traffic demands. It is found that the proposed model has a better guidance effect when the length of the block section is 2 s, which facilitates traffic congestion alleviation of the intersection in practice.

Originality/value

Based on the aforementioned discussion, the contributions of this paper are three-fold. Based on the traveling information of HV/CV and the signal phase and timing plans, the QMBSG model is proposed to direct platoon consisting of HV and CV through the intersection coordinately, by following the block interval assigned dynamically. Considering comprehensively the indexes of mobility, safety and environment, a GEF is provided to evaluate the guidance effect of vehicles through the intersection. Sensitivity analysis is carried out on the QMBSG model. The key communication and traffic parameters of the CV environment are analyzed, such as path attenuation, PR, etc. Finally, the effect of the length of block interval is explored.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 4 September 2017

Zhishuo Liu, Qianhui Shen and Jingmiao Ma

This paper aims to provide a driving behavior scoring model to decide the personalized automobile premium for each driver.

5322

Abstract

Purpose

This paper aims to provide a driving behavior scoring model to decide the personalized automobile premium for each driver.

Design/methodology/approach

Driving behavior scoring model.

Findings

The driving behavior scoring model could effectively reflect the risk level of driver’s safe driving.

Originality/value

A driving behavior scoring model for UBI.

Details

International Journal of Crowd Science, vol. 1 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 11 April 2022

Jie Zhu, Said Easa and Kun Gao

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to…

2281

Abstract

Purpose

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to various negative impacts on traffic efficiency and safety. The connected and autonomous vehicles (CAVs), with their capabilities of real-time communication and precise motion control, hold a great potential to facilitate ramp merging operation through enhanced coordination strategies. This paper aims to present a comprehensive review of the existing ramp merging strategies leveraging CAVs, focusing on the latest trends and developments in the research field.

Design/methodology/approach

The review comprehensively covers 44 papers recently published in leading transportation journals. Based on the application context, control strategies are categorized into three categories: merging into sing-lane freeways with total CAVs, merging into sing-lane freeways with mixed traffic flows and merging into multilane freeways.

Findings

Relevant literature is reviewed regarding the required technologies, control decision level, applied methods and impacts on traffic performance. More importantly, the authors identify the existing research gaps and provide insightful discussions on the potential and promising directions for future research based on the review, which facilitates further advancement in this research topic.

Originality/value

Many strategies based on the communication and automation capabilities of CAVs have been developed over the past decades, devoted to facilitating the merging/lane-changing maneuvers at freeway on-ramps. Despite the significant progress made, an up-to-date review covering these latest developments is missing to the authors’ best knowledge. This paper conducts a thorough review of the cooperation/coordination strategies that facilitate freeway on-ramp merging using CAVs, focusing on the latest developments in this field. Based on the review, the authors identify the existing research gaps in CAV ramp merging and discuss the potential and promising future research directions to address the gaps.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 31 July 2021

Zhao Zhang and Xianfeng (Terry) Yang

This study aims to study the connected vehicle (CV) impact on highway operational performance under a mixed CV and regular vehicle (RV) environment.

Abstract

Purpose

This study aims to study the connected vehicle (CV) impact on highway operational performance under a mixed CV and regular vehicle (RV) environment.

Design/methodology/approach

The authors implemented a mixed traffic flow model, along with a CV speed control model, in the simulation environment. According to the different traffic characteristics between CVs and RVs, this research first analyzed how the operation of CVs can affect highway capacity under both one-lane and multi-lane cases. A hypothesis was then made that there shall exist a critical CV penetration rate that can significantly show the benefit of CV to the overall traffic. To prove this concept, this study simulated the mixed traffic pattern under various conditions.

Findings

The results of this research revealed that performing optimal speed control to CVs will concurrently benefit RVs by improving highway capacity. Furthermore, a critical CV penetration rate should exist at a specified traffic demand level, which can significantly reduce the speed difference between RVs and CVs. The results offer effective insight to understand the potential impacts of different CV penetration rates on highway operation performance.

Originality/value

This approach assumes that there shall exist a critical CV penetration rate that can maximize the benefits of CV implementations. CV penetration rate (the proportion of CVs in mixed traffic) is the key factor affecting the impacts of CV on freeway operational performance. The evaluation criteria for freeway operational performance are using average travel time under different given traffic demand patterns.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 7 August 2018

Yun Zou and Xiaobo Qu

Freeway work zones have been traffic bottlenecks that lead to a series of problems, including long travel time, high-speed variation, driver’s dissatisfaction and traffic…

1888

Abstract

Purpose

Freeway work zones have been traffic bottlenecks that lead to a series of problems, including long travel time, high-speed variation, driver’s dissatisfaction and traffic congestion. This research aims to develop a collaborative component of connected and automated vehicles (CAVs) to alleviate negative effects caused by work zones.

Design/methodology/approach

The proposed cooperative component is incorporated in a cellular automata model to examine how and to what scale CAVs can help in improving traffic operations.

Findings

Simulation results show that, with the proposed component and penetration of CAVs, the average performances (travel time, safety and emission) can all be improved and the stochasticity of performances will be minimized too.

Originality/value

To the best of the authors’ knowledge, this is the first research that develops a cooperative mechanism of CAVs to improve work zone performance.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 51