Search results

1 – 10 of 656
Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 16 April 2018

Guillermo A. Riveros and Manuel E. Rosario-Pérez

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and…

1748

Abstract

Purpose

The combined effects of several complex phenomena cause the deterioration of elements in steel hydraulic structures (SHSs) within the US lock system: corrosion, cracking and fatigue, impact and overloads. Predicting the future condition state of these structures by the use of current condition state inspection data can be achieved through the probabilistic chain deterioration model. The purpose of this study is to derive the transition probability matrix using final elements modeling of a miter gate.

Design/methodology/approach

If predicted accurately, this information would yield benefits in determining the need for rehabilitation or replacement of SHS. However, because of the complexity and difficulties on obtaining sufficient inspection data, there is a lack of available condition states needed to formulate proper transition probability matrices for each deterioration case.

Findings

This study focuses on using a three-dimensional explicit finite element analysis (FEM) of a miter gate that has been fully validated with experimental data to derive the transition probability matrix when the loss of flexural capacity in a corroded member is simulated.

Practical implications

New methodology using computational mechanics to derive the transition probability matrices of navigation steel structures has been presented.

Originality/value

The difficulty of deriving the transition probability matrix to perform a Markovian analysis increases when limited amount of inspection data is available. The used state of practice FEM to derive the transition probability matrix is not just necessary but also essential when the need for proper maintenance is required but limited amount of the condition of the structural system is unknown.

Open Access
Article
Publication date: 5 October 2023

Babitha Philip and Hamad AlJassmi

To proactively draw efficient maintenance plans, road agencies should be able to forecast main road distress parameters, such as cracking, rutting, deflection and International…

Abstract

Purpose

To proactively draw efficient maintenance plans, road agencies should be able to forecast main road distress parameters, such as cracking, rutting, deflection and International Roughness Index (IRI). Nonetheless, the behavior of those parameters throughout pavement life cycles is associated with high uncertainty, resulting from various interrelated factors that fluctuate over time. This study aims to propose the use of dynamic Bayesian belief networks for the development of time-series prediction models to probabilistically forecast road distress parameters.

Design/methodology/approach

While Bayesian belief network (BBN) has the merit of capturing uncertainty associated with variables in a domain, dynamic BBNs, in particular, are deemed ideal for forecasting road distress over time due to its Markovian and invariant transition probability properties. Four dynamic BBN models are developed to represent rutting, deflection, cracking and IRI, using pavement data collected from 32 major road sections in the United Arab Emirates between 2013 and 2019. Those models are based on several factors affecting pavement deterioration, which are classified into three categories traffic factors, environmental factors and road-specific factors.

Findings

The four developed performance prediction models achieved an overall precision and reliability rate of over 80%.

Originality/value

The proposed approach provides flexibility to illustrate road conditions under various scenarios, which is beneficial for pavement maintainers in obtaining a realistic representation of expected future road conditions, where maintenance efforts could be prioritized and optimized.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 12 October 2022

Mikko Sauni, Heikki Luomala, Pauli Kolisoja and Kalle Vaismaa

Recent research outputs can be difficult to implement into ongoing safety critical processes. Hence, research is well beyond current practices in railway asset management. This…

Abstract

Purpose

Recent research outputs can be difficult to implement into ongoing safety critical processes. Hence, research is well beyond current practices in railway asset management. This paper demonstrates the process of creating tangible change within a railway asset management organization by introducing a framework for advancing track geometry deterioration analyses (TGDA) in practice.

Design/methodology/approach

The research was conducted in three parts: (1) maturity models were reviewed and adapted as the basis for the framework, (2) the initial maturity level was investigated by conducting semi-structured expert interviews, and (3) a framework for development was created in cooperation with stakeholders during three workshops. The methodology and findings were tested and applied in the Finnish state rail network asset management.

Findings

The main output of this study is the framework for advancing TGDA in railway asset management. The novel framework provides structure for controlled incremental development, which is essential when altering a safety critical process.

Practical implications

The research process was successfully applied in Finland. Following the steps presented in this article, any organization can apply the framework to plan their development schemes for railway asset management.

Originality/value

Full-scale implementation of novel models and methods is often overlooked, which prevents practical asset management from obtaining tangible benefits from research. This research provides an innovative approach in narrowing the overlooked research gap and brings research results within the reach of practitioners.

Details

Built Environment Project and Asset Management, vol. 12 no. 6
Type: Research Article
ISSN: 2044-124X

Keywords

Open Access
Article
Publication date: 26 November 2019

Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei and Alieta Eyles

Quality deterioration in bananas along the supply chain (SC) due to cosmetic damage has been a persistent challenge in Australia. The purpose of this paper is to investigate the…

7187

Abstract

Purpose

Quality deterioration in bananas along the supply chain (SC) due to cosmetic damage has been a persistent challenge in Australia. The purpose of this paper is to investigate the incidence of cosmetic defects in bananas across the post-harvest SC and determining the causes of the diminished fruit quality at the retail stores.

Design/methodology/approach

The study quantified the level of cosmetic damage in 243 cartons of Cavendish bananas across three post-harvest SCs in Australia from pack houses to retail stores and identified the risk factors for cosmetic defects.

Findings

The level of cosmetic damage progressively increased from pack house (1.3 per cent) to distribution centre (DC) (9.0 per cent) and retail (13.3 per cent) and was significantly influenced by package height and pallet positioning during transit. Abrasion damage in ripened bananas was influenced by the travel distance between DC and retail store. The study also revealed a range of risk factors contributing to the observed damage including weakened paperboard cartons due to high moisture absorption during the ripening process.

Research limitations/implications

This study only investigated damage incidence in three post-harvest banana SCs in Australia and the damage assessments were confined to packaged bananas.

Originality/value

This study assessed the quality of bananas along the entire post-harvest SC from farm gate to retail store. The study provided knowledge of the extent of the quality defects, when and where the damage occurred and demonstrated the underlying factors for damage along the SC. This will enable the development of practical interventions to improve the quality and minimize wastage of bananas in the retail markets.

Details

Modern Supply Chain Research and Applications, vol. 1 no. 2
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 4 November 2021

Beata Agnieszka Żukowska, Olga Anna Martyniuk and Robert Zajkowski

Survivability capital is a unique resource resulting from the “familiness” constituting an inherent feature of family firms. Familiness represents the ability of family members to…

2283

Abstract

Purpose

Survivability capital is a unique resource resulting from the “familiness” constituting an inherent feature of family firms. Familiness represents the ability of family members to reinforce the financial and non-financial resources of businesses facing threats to their economic existence. This work proposes and examines various dimensions of the survivability capital construct, verifying whether family firms expecting deterioration of their economic situation or problems with survival due to the COVID-19 crisis can mobilise sufficient capital to survive.

Design/methodology/approach

This article provides empirical evidence based on a cross-sectional online survey of 167 Polish family firms, conducted at the beginning of the COVID-19 pandemic. The method (scale) of survivability capital measurement was elaborated and validated using principal component analysis (PCA) and confirmatory factor analyses (CFA). Next, the mobilisation of the different dimensions of survivability capital was examined using PLS-SEM modelling.

Findings

The survivability capital of family firms is composed of two dimensions: internal (based on directly involved family members) and external (based on not directly involved family members). Family firms facing crisis-induced deterioration of the economic situation engage its internal component. Subsequently, family firms forecasting decreasing probability of survival during a crisis try to engage both the internal and the external components of survivability capital. Such behaviour is in line with the resource-based view as well as with the sustainable family business theory.

Originality/value

To the best of the authors' knowledge, this is one of the first studies to examine analytically the survivability capital construct. While previous studies mentioned the existence of survivability capital, this study attempts to introduce its various dimensions and test the mobilisation of survivability capital during the COVID-19 crisis.

Details

International Journal of Entrepreneurial Behavior & Research, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2554

Keywords

Open Access
Article
Publication date: 14 March 2024

Ivan D. Trofimov

In this paper we examine the validity of the J-curve hypothesis in four Southeast Asian economies (Indonesia, Malaysia, the Philippines and Thailand) over the 1980–2017 period.

Abstract

Purpose

In this paper we examine the validity of the J-curve hypothesis in four Southeast Asian economies (Indonesia, Malaysia, the Philippines and Thailand) over the 1980–2017 period.

Design/methodology/approach

We employ the linear autoregressive distributed lags (ARDL) model that captures the dynamic relationships between the variables and additionally use the nonlinear ARDL model that considers the asymmetric effects of the real exchange rate changes.

Findings

The estimated models were diagnostically sound, and the variables were found to be cointegrated. However, with the exception of Malaysia, the short- and long-run relationships did not attest to the presence of the J-curve effect. The trade flows were affected asymmetrically in Malaysia and the Philippines, suggesting the appropriateness of nonlinear ARDL in these countries.

Originality/value

The previous research tended to examine the effects of the real exchange rate changes on the agricultural trade balance and specifically the J-curve effect (deterioration of the trade balance followed by its improvement) in the developed economies and rarely in the developing ones. In this paper, we address this omission.

Details

Review of Economics and Political Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2356-9980

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Book part
Publication date: 4 May 2018

Maizuar, Lihai Zhang, Russell Thompson and Herman Fithra

Purpose – The purpose of this study is to develop a numerical framework to predict the time-dependent probability of failure of a bridge subjected to multiple vehicle impacts…

Abstract

Purpose – The purpose of this study is to develop a numerical framework to predict the time-dependent probability of failure of a bridge subjected to multiple vehicle impacts. Specially, this study focuses on investigating the inter-relationship between changes in life-cycle parameters (e.g., damage size caused by vehicle impact, loss of initial structural capacity, and threshold intervention) and bridges probability of failure.

Design/Methodology/Approach – The numerical procedure using MATLAB program is developed to compute the probability failure of a bridge. First, the importance and characteristics of life-cycle analysis is described. Then, model for damage accumulation and life cycle as a result of heavy vehicle impacts is discussed. Finally, the probability of failure of a bridge subjected to vehicle impacts as a result of change in life-cycle parameters is presented.

Findings – The results of study show that damage size caused by both vehicle impacts and loss of initial structural capacity have a great impact on the long-term safety of bridges. In addition, the probability of failure of a bridge under different threshold limits indicates that the structural intervention (e.g., repair or maintenance) should be undertaken to extend the service life of a bridge.

Research Limitations/Implications – The damage sizes caused by heavy vehicle impacts are based on simple assumptions. It is suggested that there would be a further study to estimate the magnitude of bridge damage as a result of vehicle impact using the full-scale impact test or computational simulation.

Practical Implications – This will allow much better predictions for residual life of bridges which could potentially be used to support decisions on health and maintenance of bridges.

Originality/Value – The life-cycle performance for assessing the time-dependent probability of failure of bridges subjected to multiple vehicle impact has not been fully discussed so far.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 8 March 2022

Hongwei Wang

The environmental deterioration has become one of the most economically consequential and charged topics. Numerous scholars have examined the driving factors failing to consider…

1502

Abstract

Purpose

The environmental deterioration has become one of the most economically consequential and charged topics. Numerous scholars have examined the driving factors failing to consider the structural breaks. This study aims to explore sustainability using the per capita ecological footprints (EF) as an indicator of environmental adversities and controlling the resources rent [(natural resources (NR)], labor capital (LC), urbanization (UR) and per capita economic growth [gross domestic product (GDP)] of China.

Design/methodology/approach

Through the analysis of the long- and short-run effects with an autoregressive distributed lag model (ARDL), structural break based on BP test and Granger causality test based on vector error correction model (VECM), empirical evidence is provided for the policies formulation of sustainable development.

Findings

The long-run equilibrium between the EF and GDP, NR, UR and LC is proved. In the long run, an environmental Kuznets curve (EKC) relationship existed, but China is still in the rising stage of the curve; there is a positive relationship between the EF and NR, indicating a resource curse; the UR is also unsustainable. The LC is the most favorable factor for sustainable development. In the short term, only the lagged GDP has an inhibitory effect on the EF. Besides, all explanatory variables are Granger causes of the EF.

Originality/value

A novel attempt is made to examine the long-term equilibrium and short-term dynamics under the prerequisites that the structural break points with its time and frequencies were examined by BP test and ARDL and VECM framework and the validity of the EKC hypothesis is tested.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 10 of 656